Auditing the Accuracy of Medical Diagnostic Coding based on International Classification of Diseases, Tenth Revision
Iranian Red Crescent Medical Journal


Coding accuracy
Coding Audit
Coding quality
Medical diagnosis

How to Cite

Mirhashemi, S. H. . ., Ramezanghorbani, N., Asadi, F., & Hajiabedin Rangraz, M. . (2020). Auditing the Accuracy of Medical Diagnostic Coding based on International Classification of Diseases, Tenth Revision . Iranian Red Crescent Medical Journal, 22(9).


Background: Medical diagnostic coding is used for the ease of retrieval and accuracy of medical information classification in health information systems. This information is the main source of decision making for health managers and policymakers in planning, epidemiological, and medical research at different levels.

Objectives: The present study aimed to audit the accuracy of the ICD-10 (International Classification of Diseases, Tenth Revision) medical diagnosis code.

Methods: The present cross-sectional study was performed on a sample of 692 hospitalized cases in 9 educational centers affiliated to Shahid Beheshti University of Medical Sciences in the first half of 2020. The content validity of the checklist was determined in this study, and the obtained data were analyzed in SPSS software using descriptive statistics.

Results: The average accuracy of coding for the main medical diagnoses across all subjects was 70%, signifying that 30% of medical records contain coding errors. The highest and least accuracy values of diagnostic coding were 80% and 47%, respectively. The application of standard abbreviations and file legibility were recognized as variables affecting code accuracy. The highest precision percentage of codes attributed to other medical diagnoses, including ICD-10-based comorbidity and complication, was in 84%-85% of the participants.

Conclusion: Given the importance of all-encompassing coding in retrieving medical information, research, and macro-health policymaking, the coding accuracy audit must be conducted on a regular basis. The interaction between coders and healthcare providers, coders' training, and improving the documentation process exerts a significant impact on the enhancement of coding accuracy.


  1. Thomas J. Medical records and issues in negligence. Indian J Urol. 2009;25(3):384-8. doi: 10.4103/0970-1591.56208. [PubMed: 19881136].
  2. Yazdi-Feyzabadi V, Emami M, Mehrolhassani MH. Health information system in primary health care: the challenges and barriers from local providers' perspective of an area in Iran. Int J Prev Med. 2015;6:57. doi: 10.4103/2008-7802.160056. [PubMed: 26236444].
  3. Weiner MG. POINT: Is ICD-10 diagnosis coding important in the era of big data? Yes. Chest. 2018;153(5):1093-5. doi: 10.1016/j.chest.2018.01.025. [PubMed: 29410203].
  4. Clark LA, Cuthbert B, Lewis-Fernández R, Narrow WE, Reed GM. Three approaches to understanding and classifying mental disorder: ICD-11, DSM-5, and the national institute of mental health’s research domain criteria (RDoC). Psychol Sci Public Interest. 2017;18(2):72-145. doi: 10.1177/1529100617727266. [PubMed: 29211974].
  5. Serinoglu L, Yarar O, Eti CM, Puturgeli T, Vayisoglu Y, Farsak M, et al. The importance of ICD-10 applications on daily practice. Medicine. 2018;7(4):873-7. doi: 10.5455/meds cience.2018.07.8843.
  6. Bowman SE. Why ICD-10 Is worth the trouble. J AHIMA. 2008;79(3):24-9. [PubMed: 18421998].
  7. Treede RD, Rief W, Barke A, Aziz Q, Bennett MI, Benoliel R, et al. Chronic pain as a symptom or a disease: the IASP classification of chronic pain for the international classification of diseases (ICD-11). Pain. 2019;160(1):19-27. doi: 10.10 97/j.pain.0000000000001384. [PubMed: 30586067].
  8. Storesund A, Haugen AS, Hjortas M, Nortvedt MW, Flaatten H, Eide GE, et al. Accuracy of surgical complication rate estimation using ICD-10 codes. Br J Surg. 2019;106(3):236-44. doi: 10.1002/bjs.10985. [PubMed: 30229870].
  9. Bosco-Levy P, Duret S, Picard F, Dos Santos P, Puymirat E, Gilleron V, et al. Diagnostic accuracy of the international classification of diseases, tenth revision, codes of heart failure in an administrative database. Pharmacoepidemiol Drug Saf. 2019;28(2):194-200. doi: 10.1002/pds.4690. [PubMed: 30395375].
  10. Xiao AY, Tan ML, Plana MN, Yadav D, Zamora J, Petrov MS. The use of international classification of diseases codes to identify patients with pancreatitis: a systematic review and meta-analysis of diagnostic accuracy studies. Clin Transl Gastroenterol. 2018;9(10):191. doi: 10.1038/s414 24-018-0060-1. [PubMed: 30287807].
  11. Wong J, Abrahamowicz M, Buckeridge DL, Tamblyn R. Assessing the accuracy of using diagnostic codes from administrative data to infer antidepressant treatment indications: a validation study. Pharmacoepidemiol Drug Saf. 2018;27(10):1101-11. doi: 10.1002/pds.4436. [PubMed: 29687504].
  12. Bosco-Levy P, Duret S, Picard F, Puymirat E, Gilleron V, Blin P, et al. Diagnostic accuracy of the international classification of disease 10th revision codes of heart failure in administrative database. Pharmacoepidemiol Drug Saf. 2018;28(2):194-200. doi: 10.1002/pds.4690. [PubMed: 30395375].
  13. Muzerengi S, Rick C, Begaj I, Ives N, Evison F, Woolley RL, et al. Coding accuracy for Parkinson's disease hospital admissions: implications for healthcare planning in the UK. Public Health. 2017;146:4-9. doi: 10.1016/j.puhe.2016.12.024 a>. [PubMed: 28404473].
  14. Delate T, Jones AE, Clark NP, Witt DM. Assessment of the coding accuracy of warfarin-related bleeding events. Thromb Res. 2017;159:86-90. doi: 10.1016/j.thromres.2017.10.004. [PubMed: 29035718].
  15. Sanders TL, Pareek A, Desai VS, Hewett TE, Levy BA, Stuart MJ, et al. Low accuracy of diagnostic codes to identify anterior cruciate ligament tear in orthopaedic database research. Am J Sports Med. 2018;46(12):2894-8. doi: 10.1177/0363546518790507. [PubMed: 30125126].
  16. Xiao AY, Tan ML, Plana MN, Yadav D, Zamora J, Petrov MS. Correction: the use of international classification of diseases codes to identify patients with pancreatitis: a systematic review and meta-analysis of diagnostic accuracy studies. Clin Transl Gastroenterol. 2018;9(11):209. doi: 10.1038/s41424-018 -0078-4. [PubMed: 30464255].
  17. Lyu HG, Stein LA, Saadat LV, Phicil SN, Haider A, Raut CP, et al. Assessment of the accuracy of disease coding among patients diagnosed with sarcoma. JAMA Oncol. 2018;4(9):1293-5. doi: 10.1001/jamaoncol.2018.2979. [PubMed: 30098150].
  18. Furlan L, Solbiati M, Pacetti V, Dipaola F, Meda M, Bonzi M, et al. Diagnostic accuracy of ICD-9 code 780.2 for the identification of patients with syncope in the emergency department. Clin Auton Res. 2018;28(6):577-82. doi: 10.1007/s10286-018-0509-z. [PubMed: 29435866].
  19. Ungprasert P, Matteson EL, Crowson CS. Accuracy of diagnostic coding for sarcoidosis in electronic databases: a population-based study. Lung. 2017;195(6):713-5. doi: 10.1007/s00408-017-0054-x. [PubMed: 28993879].
  20. Farzandipour M, Sheikhtaheri A. Accuracy of diagnostic coding based on ICD-10. Feyz. 2009;12(4):68-77.
  21. Mahmudzade Sagheb Z. Determination of coding accuracy in the training hospitals of Shiraz University of Medical Sciences. [Master Thesis]. Tehran: School of Management and Medical Information Sciences of Iran University of Medical Sciences; 1995.
  22. Ahmadi M, Alipour J. Adherance to quality elements for coding of diagnoses and procedures. Hakim Res J. 2009;12(1):11-8.
  23. Khalatbari-Soltani S, Waeber G, Marques-Vidal P. Diagnostic accuracy of undernutrition codes in hospital administrative discharge database: improvements needed. Nutrition. 2018;55-56:111-5. doi: 10.1016/j.nut.2018.03.051. [PubMed: 29980090].
  24. Lucyk K, Tang K, Quan H. Barriers to data quality resulting from the process of coding health information to administrative data: a qualitative study. BMC Health Serv Res. 2017;17(1):766. doi: 10.1186/s12913-017-2697-y. [PubMed: 29166905].
  25. Hamilton F, Arnold D. Accuracy of clinical coding of pleural empyema: a validation study. J Eval Clin Pract. 2020;26(1):79-80. doi: 10.1111/jep.13184. [PubMed: 31115122].
  26. Powell H, Lim LY, Heller RF. Accuracy of administrative data to assess comorbidity in patients with heart disease: an Australian perspective. J Clin Epidemiol. 2001;54(7):687-93. doi: 10.1016/s0895-4356(00)00364-4. [PubMed: 11438409].
  27. Tsopra R, Peckham D, Beirne P, Rodger K, Callister M, White H, et al. The impact of three discharge coding methods on the accuracy of diagnostic coding and hospital reimbursement for inpatient medical care. Int J Med Inform. 2018;115:35-42. doi: 10.1016/j.ijmedinf.2018.03.0 15. [PubMed: 29779718].
  28. Alonso V, Santos JV, Pinto M, Ferreira J, Lema I, Lopes F, et al. Health records as the basis of clinical coding: Is the quality adequate? A qualitative study of medical coders’ perceptions. Health Inf Manag. 2020;49(1):28-37. doi: 10.1177/1833358319826351. [PubMed: 30744403].
  29. Taylor K, Henderson S. 112 Challenges of clinical coding: an audit of the accuracy of primary diagnosis coding in a specialist palliative care unit. BMJ Support Palliat Care. 2019;9(Suppl 1):A49-50. doi: 10.1136/bmjspcare-2019-ASP.135.
  30. Castaldi M, McNelis J. Introducing a clinical documentation specialist to improve coding and collectability on a surgical service. J Healthc Qual. 2019;41(3):e21-9. doi: 10.1097/JHQ.0000000000000146. [PubMed: 31094954].
  31. Shaheen NA, Manezhi B, Thomas A, AlKelya M. Reducing defects in the datasets of clinical research studies: conformance with data quality metrics. BMC Med Res Methodol. 2019;19(1):98. doi: 10.1186/s12874-019-0735-7. [PubMed: 31077148].
  32. Maryati W, Rahayuningrum IO, Ismayani A. Quality of medical information determine the quality of diagnosis code. Int J Public Health Sci. 2019;8(3):326-31. doi: 10.11591/ijphs.v8i3.20236.
  33. Tang KL, Lucyk K, Quan H. Coder perspectives on physician-related barriers to producing high-quality administrative data: a qualitative study. CMAJ Open. 2017;5(3):E617-22. doi: 10.9778/cmajo.20170036. [PubMed: 28827414].
  34. Santos S, Murphy G, Baxter K, Robinson KM. Organisational factors affecting the quality of hospital clinical coding. Health Inf Manag. 2008;37(1):25-37. doi: 10.1177/183335830803700103. [PubMed: 18245862].
  35. Kiongo JG. Effects of training on quality of clinical coding at mbagathi county referral. Int J Innovat Educ Res. 2018;6(1):231-7. doi: 10.31686/ijier.vol6.iss1.943.