Potential Adverse Drug Reactions of Chloroquine in the Treatment of COVID-19

IRCMJ logo


Adverse drug reactions

How to Cite

WangG., YeQ., HuangY., LuJ., ZhuY., ZhuL., LiX., ZhangJ., LiZ., LanJ., & LiZ. (2020). Potential Adverse Drug Reactions of Chloroquine in the Treatment of COVID-19. Iranian Red Crescent Medical Journal, 22(11). https://doi.org/10.32592/ircmj.2020.22.11.70


Context: Since December 2019, the coronavirus disease 2019 (COVID-19) has broken out in Wuhan, Hubei Province, China. Due to the highly pathogenic and infectious characteristics, COVID-19 spread across China and later globally and became a severe pandemic. To date, there have been no efficacious specialized drugs to treat COVID-19. The China-issued Diagnosis and Treatment of Pneumonia Caused by Novel Coronavirus (Trial version 6) added the chloroquine phosphate to the antiviral treatment protocol for infected adults.

Evidence Acquisition: In this review, government documents and authoritative guidelines on COVID-19 were collected from the official website of organizations related to health and medicine. Research articles related to chloroquine and its application for COVID-19 treatment were searched and acquired from the PubMed platform. Facts and data related to the use of chloroquine were summarized in several parts.

Results: Recently, there has been an increase in research on the use of chloroquine for the treatment of COVID-19. This drug is utilized as an antimalarial and antiviral medication. There are some concerns and cautions on the clinical application of chloroquine, about which clinicians should be informed during this global pandemic. The present review summarized data on the mechanism of action, drug-drug interaction (DDI), and adverse drug reaction (ADR) of chloroquine and pharmaceutical care for special patients in order to provide a reference for the rational use of this drug in COVID-19 patients.

Conclusion: Currently, there is mixed evidence on the efficacy of chloroquine in the treatment of COVID-19. Potential DDIs and ADRs, as well as pharmaceutical care, for special patients should be considered in fighting against the pandemic.



  1. Zhou P, Yang XL, Wang XG, Hu B, Zhang L, Zhang W, et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature. 2020;579(7798):270-3. doi: 10.1038/s41586-020-2012-7. [PubMed: 32015507].
  2. Yan R, Zhang Y, Li Y, Xia L, Guo Y, Zhou Q. Structural basis for the recognition of SARS-CoV-2 by full-length human ACE2. Science. 2020;367(6485):1444-8. doi: 10.1126/science.abb2762. [PubMed: 32132184].
  3. Vincent MJ, Bergeron E, Benjannet S, Erickson BR, Rollin PE, Ksiazek TG, et al. Chloroquine is a potent inhibitor of SARS coronavirus infection and spread. Virol J. 2005;2:69. doi: 10.1186/1743-422X-2-69. [PubMed: 16115318].
  4. Wang M, Cao R, Zhang L, Yang X, Liu J, Xu M, et al. Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro. Cell Res. 2020;30(3):269-71. doi: 10.1038/s41422-020-0282-0. [PubMed: 32020029].
  5. Health Commission of People’s Republic of China. Diagnosis and treatment of pneumonia caused by novel coronavirus. 6th ed. China: NHCotPsRo; 2020.
  6. Adjustment on the usage of chloroquine phosphate for treating 2019 coronavirus disease. National Health Commission and National Administrative Office of Chinese Tradition Medicine. Available at: URL: http://www.nhc.gov.cn/yzygj/s7653p/202002/0293d017621941f6b2a4890035243730.shtml; 2020.
  7. Health Commission of People’s Republic of China. Diagnosis and treatment of pneumonia caused by novel coronavirus. 7th ed. China: NHCotPsRo; 2020.
  8. Packard RM. The origins of antimalarial-drug resistance. N Engl J Med. 2014;371(5):397-9. doi: 10.1056/NEJMp1403340. [PubMed: 25075832].
  9. Savarino A, Boelaert JR, Cassone A, Majori G, Cauda R. Effects of chloroquine on viral infections: an old drug against today's diseases? Lancet Infect Dis. 2003;3(11):722-7. doi: 10.1016/s1473-3099(03)00806-5. [PubMed: 14592603].
  10. Xu X, Chen P, Wang J, Feng J, Zhou H, Li X, et al. Evolution of the novel coronavirus from the ongoing Wuhan outbreak and modeling of its spike protein for risk of human transmission. Sci China Life Sci. 2020;63(3):457-60. doi: 10.1007/s11427-020-1637-5. [PubMed: 32009228].
  11. Yang ZY, Huang Y, Ganesh L, Leung K, Kong WP, Schwartz O, et al. pH-dependent entry of severe acute respiratory syndrome coronavirus is mediated by the spike glycoprotein and enhanced by dendritic cell transfer through DC-SIGN. J Virol. 2004;78(11):5642-50. doi: 10.1128/JVI.78.11.5642-5650.2004. [PubMed: 15140961].
  12. Keyaerts E, Vijgen L, Maes P, Neyts J, Van Ranst M. In vitro inhibition of severe acute respiratory syndrome coronavirus by chloroquine. Biochem Biophys Res Commun. 2004;323(1):264-8. DOI: 10.1016/j.bbrc.2004.08.085. [PubMed: 15351731].
  13. de Wilde AH, Jochmans D, Posthuma CC, Zevenhoven-Dobbe JC, van Nieuwkoop S, Bestebroer TM, et al. Screening of an FDA-approved compound library identifies four small-molecule inhibitors of Middle East respiratory syndrome coronavirus replication in cell culture. Antimicrol Agents Chemother. 2014;58(8):4875-84. doi: 10.1128/AAC.03011-14. [PubMed: 24841269].
  14. Borba MG, Val FF, Sampaio VS, Alexandre MA, Melo GC, Brito M, et al. Effect of high vs low doses of chloroquine diphosphate as adjunctive therapy for patients hospitalized with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection: a randomized clinical trial. JAMA Netw Open. 2020;3(4):e208857. doi: 10.1001/jamanetworkopen.2020.8857. [PubMed: 32339248].
  15. Huang M, Li M, Xiao F, Pang P, Liang J, Tang T, et al. Preliminary evidence from a multicenter prospective observational study of the safety and efficacy of chloroquine for the treatment of COVID-19. Natl Sci Rev. 2020;7(9):1428-36. doi: 10.1093/nsr/nwaa113.
  16. Qaseem A, Yost J, Etxeandia-Ikobaltzeta I, Miller MC, Abraham GM, Obley AJ, et al. Correction: should clinicians use chloroquine or hydroxychloroquine alone or in combination with azithromycin for the prophylaxis or treatment of COVID-19? Ann Intern Med. 2020;173(2):166. doi: 10.7326/L20-0684. [PubMed: 32449881].
  17. Coronavirus (COVID-19) update: FDA revokes emergency use authorization for chloroquine and hydroxychloroquine. US Food and Drug Administration. Available at: URL: https://www.fda.gov/news-events/press-announcements/coronavirus-covid-19-update-fda-revokes-emergency-use-authorization-chloroquine-and?from=groupmessage&isappinstalled=0; 2020.
  18. National Institutes of Health. COVID-19 treatment guidelines panel. coronavirus disease 2019 (COVID-19) treatment guidelines. New York: National Institutes of Health; 2020.
  19. Jankelson L, Karam G, Becker ML, Chinitz LA, Tsai MC. QT prolongation, torsades de pointes and sudden death with short courses of chloroquine or hydroxychloroquine as used in COVID-19: a systematic review. Heart Rhythm. 2020;17(9):1472-9. doi: 10.1016/j.hrthm.2020.05.008. [PubMed: 32438018].
  20. Taketomo CK, Hodding JH, Kraus DM. Pediatric & neonatal dosage handbook: a comprehensive resource for all clinicians treating pediatric and neonatal patients. 25th ed. Ohio: Lexicomp; 2018.
  21. Schlossberg D, Samuel R. Antibiotics manual: a guide to commonly used antimicrobials. 2nd ed. New Jersey: John Wiley & Sons; 2017.
  22. Ducharme J, Farinotti R. Clinical pharmacokinetics and metabolism of chloroquine. Focus on recent advancements. Clin Pharmacokinet. 1996;31(4):257-74. doi: 10.2165/00003088-199631040-00003. [ PubMed: 8896943].
  23. Stas P, Faes D, Noyens P. Conduction disorder and QT prolongation secondary to long-term treatment with chloroquine. Int J Cardiol. 2008;127(2):e80-2. doi: 10.1016/j.ijcard.2007.04.055. [PubMed: 17590456].
  24. Wittes R. Adverse reactions to chloroquine and amodiaquine as used for malaria prophylaxis: a review of the literature. Can Fam Physician. 1987;33:2644-9. [PubMed: 21264010].
  25. Cervera A, Espinosa G, Font J, Ingelmo M. Cardiac toxicity secondary to long term treatment with chloroquine. Ann Rheum Dis. 2001;60(3):301. doi: 10.1136/ard.60.3.301. [PubMed: 11245140].
  26. Roden DM. Drug-induced prolongation of the QT interval. N Engl J Med. 2004;350(10):1013-22. doi: 10.1056/NEJMra032426. [ PubMed: 14999113].
  27. Tisdale JE. Drug-induced QT interval prolongation and torsades de pointes: role of the pharmacist in risk assessment, prevention and management. Can Pharm J. 2016;149(3):139-52. doi: 10.1177/1715163516641136. [PubMed: 27212965].
  28. Kannankeril P, Roden DM, Darbar D. Drug-induced long QT syndrome. Pharmacol Rev. 2010;62(4):760-81. doi: 10.1124/pr.110.003723. [PubMed: 21079043].
  29. Michaelides M, Stover NB, Francis PJ, Weleber RG. Retinal toxicity associated with hydroxychloroquine and chloroquine: risk factors, screening, and progression despite cessation of therapy. Arch Ophthalmol. 2011;129(1):30-9. doi: 10.1001/archophthalmol.2010.321. [PubMed: 21220626].
  30. Costedoat-Chalumeau N, Dunogué B, Leroux G, Morel N, Jallouli M, Le Guern V, et al. A Critical review of the effects of hydroxychloroquine and chloroquine on the eye. Clin Rev Allergy Immunol. 2015;49(3):317-26. doi: 10.1007/s12016-015-8469-8. [PubMed: 25672591].
  31. Ruiz-Irastorza G, Ramos-Casals M, Brito-Zeron P, Khamashta MA. Clinical efficacy and side effects of antimalarials in systemic lupus erythematosus: a systematic review. Ann Rheum Dis. 2010;69(1):20-8. doi: 10.1136/ard.2008.101766. [PubMed: 19103632].
  32. Nagaratnam N, Chetiyawardana AD, Rajiyah S. Aplasia and leukaemia following chloroquine therapy. Postgrad Med J. 1978;54(628):108-12. DOI: 10.1136/pgmj.54.628.108. [PubMed: 273209].
  33. Abu-Shakra M, Lee P. Hypoglycemia: an unusual adverse reaction to chloroquine. Clin Exp Rheumatol. 1994;12(1):95. [PubMed: 8162653].
  34. Soria A, Barbaud A, Assier H, Avenel-Audran M, Tétart F, Raison-Peyron N, et al. Cutaneous adverse drug reactions with antimalarials and allergological skin tests. Dermatology. 2015;231(4):353-9. doi: 10.1159/000438787. [PubMed: 26457932].
  35. Bhatia MS, Malik SC. Psychiatric complications of chloroquine. Indian J Psychiatry. 1994;36(2):85-7. [PubMed: 21743675].
  36. Alisky JM, Chertkova EL, Iczkowski KA. Drug interactions and pharmacogenetic reactions are the basis for chloroquine and mefloquine-induced psychosis. Med Hypotheses. 2006;67(5):1090-4. DOI: 10.1016/j.mehy.2006.01.059. [PubMed: 16843615].
  37. Wolfe MS, Cordero JF. Safety of chloroquine in chemosuppression of malaria during pregnancy. Br Med J. 1985;290(6480):1466-7. doi: 10.1136/bmj.290.6480.1466. [PubMed: 3922534].
  38. Ressel G. AAP updates statement for transfer of drugs and other chemicals into breast milk. American Academy of Pediatrics. Am Fam Physician. 2002;65(5):979-80. [PubMed: 11898968].
  39. Saleh M, Gabriels J, Chang D, Kim BS, Mansoor A, Mahmood E, et al. The effect of chloroquine, hydroxychloroquine and azithromycin on the corrected QT interval in patients with SARS-CoV-2 infection. Circ Arrhythm Electrophysiol. 2020;13(6):e008662. doi: 10.1161/CIRCEP.120.008662. [PubMed: 32347743].
  40. Zheng YY, Ma YT, Zhang JY, Xie X. COVID-19 and the cardiovascular system. Nat Rev Cardiol. 2020;17(5):259-60. doi: 10.1038/s41569-020-0360-5. [PubMed: 32139904].
  41. Giudicessi JR, Noseworthy PA, Friedman PA, Ackerman MJ. Urgent guidance for navigating and circumventing the qtc-prolonging and torsadogenic potential of possible pharmacotherapies for coronavirus disease 19 (COVID-19). Mayo Clin Proc. 2020;95(6):1213-21. doi: 10.1016/j.mayocp.2020.03.024. [PubMed: 32359771].
  42. Wu CI, Postema PG, Arbelo E, Behr ER, Bezzina CR, Napolitano C, et al. SARS-CoV-2, COVID-19, and inherited arrhythmia syndromes. Heart Rhythm. 2020;17(9):1456-62. doi: 10.1016/j.hrthm.2020.03.024. [PubMed: 32244059].
  43. Lakkireddy DR, Chung MK, Gopinathannair R, Patton KK, Gluckman TJ, Turagam M, et al. Guidance for cardiac electrophysiology during the coronavirus (COVID-19) pandemic from the heart rhythm society COVID-19 task force; electrophysiology section of the american college of cardiology; and the electrocardiography and arrhythmias committee of the council on clinical cardiology, american heart association. Heart Rhythm. 2020;17(9):e233-41. doi: 10.1016/j.hrthm.2020.03.028. [PubMed: 32247013].
  44. Furst DE. Pharmacokinetics of hydroxychloroquine and chloroquine during treatment of rheumatic diseases. Lupus. 1996;5(Suppl 1):S11-5. [PubMed: 8803904].