Effect of Adipose-Derived Mesenchymal Stem Cell Repair in Nicotine Model Rat: A Femoral Bone Diaphyseal Defect Study


Adipocyte Mesenchymal Stem Cell

How to Cite

Riahi , M., Parivar , K. ., Baharara , J. ., & Zandi , R. . (2020). Effect of Adipose-Derived Mesenchymal Stem Cell Repair in Nicotine Model Rat: A Femoral Bone Diaphyseal Defect Study. Iranian Red Crescent Medical Journal, 22(3). Retrieved from https://ircmj.com/index.php/IRCMJ/article/view/608


Background: The major function of the bone in the skeletal system is to provide structural support to the body and its vital organs. Many patients suffer from the disability to restore bone lesions following bone fractures during crashes or accidents. The use of mesenchymal stem cells such as adipose-derived mesenchymal stem cells (ADMSCs), along with collagen scaffolds, and its transfer to the lesion site can be valued as one of the available treatment options.

Objectives: In the current paper, a study was conducted on the level of mesenchymal stem cell repair from the rat adipocytes, where it was evaluated in bone defects.

Methods: In this study, mesenchymal stem cells were isolated from the rat adipocytes and their stem cell lines were determined with the standard cell tests. The isolated cells were differentiated in the next step and transferred to the two main groups: nicotine modeled and non-modeled (non-nicotine) along with collagens. The repair of the defect caused by a 2 mm drill in the diaphyseal region of the rat bone was evaluated after four weeks using radiographic examination and histopathologic staining.

Results: Radiographic data analysis indicated that bone density was much higher in the non-nicotine group than in the nicotine group. Histopathologic staining showed that bone formation was higher in the non-nicotine group than in the nicotine group. The new bone formation was about 80% and 60% in the non-nicotine and nicotine groups with differentiated osteocytes of ADMSCs, respectively.

Conclusions: Adipose-derived mesenchymal stem cell transplantation is effective in bone defect repair and nicotine plays an important role in the bone repair process as an inhibitory agent.



  1. Chen Y, Shao JZ, Xiang LX, Dong XJ, Zhang GR. Mesenchymal stem cells: A promising candidate in regenerative medicine. Int J Biochem Cell Biol. 2008;40(5):815-20. doi: 10.1016/j.biocel.2008.01.007. [PubMed: 18295530].
  2. Salgado AJ, Coutinho OP, Reis RL. Bone tissue engineering: State of the art and future trends. Macromol Biosci. 2004;4(8):743-65. doi: 10.1002/mabi.200400026. [PubMed: 15468269].
  3. Logeart-Avramoglou D, Anagnostou F, Bizios R, Petite H. Engineering bone: Challenges and obstacles. J Cell Mol Med. 2005;9(1):72-84. doi: 10.1111/j.1582-4934.2005.tb00338.x. [PubMed: 15784166]. [PubMed Central: PMC6741343].
  4. Khomarlou N, Aberoomand-Azar P, Lashgari AP, Tebyanian H, Hakakian A, Ranjbar R, et al. Essential oil composition and in vitro antibacterial activity of Chenopodium album subsp. striatum. Acta Biologica Hungarica. 2018;69(2):144-55. doi: 10.1556/018.69.2018.2.4. [PubMed: 29888667].
  5. Mosaddad SA, Tahmasebi E, Yazdanian A, Rezvani MB, Seifalian A, Yazdanian M, et al. Oral microbial biofilms: An update. Eur J Clin Microbiol Infect Dis. 2019;38(11):2005-19. doi: 10.1007/s10096-019-03641-9. [PubMed: 31372904].
  6. Satija NK, Gurudutta GU, Sharma S, Afrin F, Gupta P, Verma YK, et al. Mesenchymal stem cells: Molecular targets for tissue engineering. Stem Cells Dev. 2007;16(1):7-23. doi: 10.1089/scd.2006.9998. [PubMed: 17348802].
  7. Koh CJ, Atala A. Tissue engineering, stem cells, and cloning: opportunities for regenerative medicine. J Am Soc Nephrol. 2004;15(5):1113-25. doi: 10.1097/01.asn.0000119683.59068.f0. [PubMed: 15100351].
  8. Kobayashi M, Spector M. In vitro response of the bone marrow-derived mesenchymal stem cells seeded in a type-I collagen-glycosaminoglycan scaffold for skin wound repair under the mechanical loading condition. Mol Cell Biomech. 2009;6(4):217-27. [PubMed: 19899445].
  9. Tuan RS, Boland G, Tuli R. Adult mesenchymal stem cells and cell-based tissue engineering. Arthritis Res Ther. 2003;5(1):32-45. doi: 10.1186/ar614. [PubMed: 12716446]. [PubMed Central: PMC154434].
  10. Xu W, Hu R, Fan E, Han D. Adipose-derived mesenchymal stem cells in collagen-hyaluronic acid gel composite scaffolds for vocal fold regeneration. Ann Otol Rhinol Laryngol. 2011;120(2):123-30. doi: 10.1177/000348941112000209. [PubMed: 21391425].
  11. Bartholomew A, Sturgeon C, Siatskas M, Ferrer K, McIntosh K, Patil S, et al. Mesenchymal stem cells suppress lymphocyte proliferation in vitro and prolong skin graft survival in vivo. Exp Hematol. 2002;30(1):42-8. doi: 10.1016/s0301-472x(01)00769-x.
  12. Caplan AI. Mesenchymal stem cells. J Orthop Res. 1991;9(5):641-50. doi: 10.1002/jor.1100090504. [PubMed: 1870029].
  13. Wakitani S, Saito T, Caplan AI. Myogenic cells derived from rat bone marrow mesenchymal stem cells exposed to 5-azacytidine. Muscle Nerve. 1995;18(12):1417-26. doi: 10.1002/mus.880181212. [PubMed: 7477065].
  14. Tebyanian H, Karami A, Nourani MR, Motavallian E, Barkhordari A, Yazdanian M, et al. Lung tissue engineering: An update. J Cell Physiol. 2019;234(11):19256-70. doi: 10.1002/jcp.28558. [PubMed: 30972749].
  15. Le Blanc K, Frassoni F, Ball L, Locatelli F, Roelofs H, Lewis I, et al. Mesenchymal stem cells for treatment of steroid-resistant, severe, acute graft-versus-host disease: A phase II study. Lancet. 2008;371(9624):1579-86. doi: 10.1016/S0140-6736(08)60690-X. [PubMed: 18468541].
  16. Sato K, Ozaki K, Mori M, Muroi K, Ozawa K. Mesenchymal stromal cells for graft-versus-host disease: Basic aspects and clinical outcomes. J Clin Exp Hematop. 2010;50(2):79-89. doi: 10.3960/jslrt.50.79. [PubMed: 21123965].
  17. Sueblinvong V, Loi R, Eisenhauer PL, Bernstein IM, Suratt BT, Spees JL, et al. Derivation of lung epithelium from human cord blood-derived mesenchymal stem cells. Am J Respir Crit Care Med. 2008;177(7):701-11. doi: 10.1164/rccm.200706-859OC. [PubMed: 18063840]. [PubMed Central: PMC2277209].
  18. Gupta N, Su X, Popov B, Lee JW, Serikov V, Matthay MA. Intrapulmonary delivery of bone marrow-derived mesenchymal stem cells improves survival and attenuates endotoxin-induced acute lung injury in mice. J Immunol. 2007;179(3):1855-63. doi: 10.4049/jimmunol.179.3.1855. [PubMed: 17641052].
  19. Loi R, Beckett T, Goncz KK, Suratt BT, Weiss DJ. Limited restoration of cystic fibrosis lung epithelium in vivo with adult bone marrow-derived cells. Am J Respir Crit Care Med. 2006;173(2):171-9. doi: 10.1164/rccm.200502-309OC. [PubMed: 16179642]. [PubMed Central: PMC2662986].
  20. Krause DS, Theise ND, Collector MI, Henegariu O, Hwang S, Gardner R, et al. Multi-organ, multi-lineage engraftment by a single bone marrow-derived stem cell. Cell. 2001;105(3):369-77. doi: 10.1016/s0092-8674(01)00328-2. [PubMed: 11348593].
  21. Wong AP, Dutly AE, Sacher A, Lee H, Hwang DM, Liu M, et al. Targeted cell replacement with bone marrow cells for airway epithelial regeneration. Am J Physiol Lung Cell Mol Physiol. 2007;293(3):L740-52. doi: 10.1152/ajplung.00050.2007. [PubMed: 17616650].
  22. Serikov VB, Popov B, Mikhailov VM, Gupta N, Matthay MA. Evidence of temporary airway epithelial repopulation and rare clonal formation by BM-derived cells following naphthalene injury in mice. Anat Rec (Hoboken). 2007;290(9):1033-45. doi: 10.1002/ar.20574. [PubMed: 17661377].
  23. Rehman J, Traktuev D, Li J, Merfeld-Clauss S, Temm-Grove CJ, Bovenkerk JE, et al. Secretion of angiogenic and antiapoptotic factors by human adipose stromal cells. Circulation. 2004;109(10):1292-8. doi: 10.1161/01.CIR.0000121425.42966.F1. [PubMed: 14993122].
  24. Shang YC, Wang SH, Xiong F, Zhao CP, Peng FN, Feng SW, et al. Wnt3a signaling promotes proliferation, myogenic differentiation, and migration of rat bone marrow mesenchymal stem cells. Acta Pharmacol Sin. 2007;28(11):1761-74. doi: 10.1111/j.1745-7254.2007.00671.x. [PubMed: 17959027].
  25. Heidari MF, Arab SS, Noroozi-Aghideh A, Tebyanian H, Latifi AM. Evaluation of the substitutions in 212, 342 and 215 amino acid positions in binding site of organophosphorus acid anhydrolase using the molecular docking and laboratory analysis. Bratisl Lek Listy. 2019;120(2):139-43. doi: 10.4149/BLL_2019_022. [PubMed: 30793618].
  26. Taherian A, Fazilati M, Taghavi Moghadam A, Tebyanian H. Optimization of purification procedure for horse F(ab´)2 antivenom against Androctonus crassicauda (Scorpion) venom. Trop J Pharmaceut Res. 2018;17(3):409. doi: 10.4314/tjpr.v17i3.4.
  27. Goli HR, Ebrahimzadeh MA, Tebyanian H, Ghazi Mirsaeed SR, Tahmasebi E, Ranjbar R, et al. The effect of Citrullus colocynthis extracts on Streptococcus mutans, Candida albicans, normal gingival fibroblast and breast cancer cells. J Biol Res (Boll Soc Ital Biol Sper). 2019;92(1):8201. doi: 10.4081/jbr.2019.8201.
  28. Babavalian H, Latifi AM, Shokrgozar MA, Bonakdar S, Tebyanian H, Shakeri F. Cloning and expression of recombinant human platelet-derived growth factor-BB in Pichia Pink. Cell Mol Biol (Noisy-le-grand). 2016;62(8):45-51. [PubMed: 27545214].
  29. Tebyanian H, Mirhosseiny SH, Kheirkhah B, Hassanshahian M, Farhadian H. Isolation and Identification of Mycoplasma synoviae From Suspected Ostriches by Polymerase Chain Reaction, in Kerman Province, Iran. Jundishapur J Microbiol. 2014;7(9). e19262. doi: 10.5812/jjm.19262. [PubMed: 25485069]. [PubMed Central: PMC4255384].
  30. Karami A, Tebyanian H, Barkhordari A, Motavallian E, Sayyad Soufdoost R, Nourani MR. Healing effects of ointment drug on full-thickness wound. C R Acad Bulg Sci. 2019;72(1):123-9. doi: 10.7546/crabs.2019.01.16.
  31. Shakeri F, Tebyanian H, Karami A, Babavalian H, Tahmasbi MH. Effect of topical phenytoin on wound healing. Trauma Mon. 2017;22(5). e35488. doi: 10.5812/traumamon.35488.
  32. Tebyanian H, Karami A, Motavallian E, Aslani J, Samadikuchaksaraei A, Arjmand B, et al. Histologic analyses of different concentrations of TritonX-100 and Sodium dodecyl sulfate detergent in lung decellularization. Cell Mol Biol (Noisy-le-grand). 2017;63(7):46-51. doi: 10.14715/cmb/2017.63.7.8. [PubMed: 28838339].
  33. Tebyanian H, Karami A, Motavallian E, Aslani J, Samadikuchaksaraei A, Arjmand B, et al. A comparative study of rat lung decellularization by chemical detergents for lung tissue engineering. Open Access Maced J Med Sci. 2017;5(7):859-65. doi: 10.3889/oamjms.2017.179. [PubMed: 29362610]. [PubMed Central: PMC5771286].
  34. Tebyanian H, Karami A, Motavallian E, Samadikuchaksaraei A, Arjmand B, Nourani MR. Rat lung decellularization using chemical detergents for lung tissue engineering. Biotech Histochem. 2019;94(3):214-22. doi: 10.1080/10520295.2018.1544376. [PubMed: 30516069].
  35. Sayyad Soufdoost R, Yazdanian M, Tahmasebi E, Yazdanian A, Tebyanian H, Karami A, et al. In vitro and in vivo evaluation of novel Tadalafil/β-TCP/Collagen scaffold for bone regeneration: A rabbit critical-size calvarial defect study. Biocybern Biomed Eng. 2019;39(3):789-96. doi: 10.1016/j.bbe.2019.07.003.
  36. Niedzwiedzki T, Dabrowski Z, Miszta H, Pawlikowski M. Bone healing after bone marrow stromal cell transplantation to the bone defect. Biomaterials. 1993;14(2):115-21. doi: 10.1016/0142-9612(93)90221-m.
  37. Horwitz EM, Prockop DJ, Fitzpatrick LA, Koo WW, Gordon PL, Neel M, et al. Transplantability and therapeutic effects of bone marrow-derived mesenchymal cells in children with osteogenesis imperfecta. Nat Med. 1999;5(3):309-13. doi: 10.1038/6529. [PubMed: 10086387].
  38. Shih HN, Shih LY, Sung TH, Chang YC. Restoration of bone defect and enhancement of bone ingrowth using partially demineralized bone matrix and marrow stromal cells. J Orthop Res. 2005;23(6):1293-9. doi: 10.1016/j.orthres.2005.04.005.1100230609. [PubMed: 15946821].