Comparison of Transcranial Direct Current Stimulation of the Primary Motor Cortex and Cerebellum on Static Balance in Older Adults


Transcranial Direct Current Stimulation
Postural Balance
Older Adults
Primary Motor Cortex

How to Cite

Baharlouei , H. ., Sadeghi-demneh , E. ., Mehravar , M. ., Manzari , P., Shaterzadeh Yazdi , M. J. ., Joghataei, M. T. . ., & Jaberzadeh , S. (2020). Comparison of Transcranial Direct Current Stimulation of the Primary Motor Cortex and Cerebellum on Static Balance in Older Adults. Iranian Red Crescent Medical Journal, 22(3). Retrieved from


Background: Falling is a major problem in older adults. Transcranial direct current stimulation (tDCS) is a neuromodulation technique to improve balance in the elderly. The majority of previous studies have assessed the effects of cerebellar and primary motor cortex (M1) tDCS, while less attention has been paid to the comparison of the effects of tDCS in these two regions.

Objectives: The goal of this study was to compare the effectiveness of cerebellum and M1 tDCS on the balance in older adults.

Methods: In this double-blind sham-controlled crossover study, a total of 32 healthy older adults were randomly assigned to two groups of M1 and cerebellum tDCS. Each group received active and sham stimulation with a crossover design within a one-week interval. The intensity and duration of tDCS were 2 mA and 20 minutes, respectively. Before and after each session, the total path length (TPL) and mean velocity (MV) of the center of pressure were determined using a force plate in both mediolateral and anteroposterior directions under single-task and dual-task conditions.

Results: The results of mixed ANOVA test showed that the main effect of time on TPL and MV was significant in both mediolateral (P < 0.01) and anteroposterior (P = 0.01) directions. The interaction between time and stimulation was also significant on TPL and MV in both mediolateral (P < 0.001) and anteroposterior (P < 0.001) directions. The between-group analysis showed no significant difference in the efficacy of cerebellar and M1 tDCS in the mediolateral (P = 0.79) and anteroposterior (P = 0.60) directions.

Conclusions: Anodal tDCS of the cerebellum and M1 could improve the postural balance indices in healthy older adults. These two techniques exerted similar effects on static balance.



  1. Zhou H, Peng K, Tiedemann A, Peng J, Sherrington C. Risk factors for falls among older community dwellers in Shenzhen, China. Inj Prev. 2019;25(1):31-5. doi: 10.1136/injuryprev-2017-042597. [PubMed: 29475977].
  2. Kisner C, Colby LA, Borstad J. Therapeutic exercise: Foundations and techniques. Fa Davis; 2017.
  3. de Moura MCDS, Hazime FA, Marotti Aparicio LV, Grecco LAC, Brunoni AR, Hasue RH. Effects of transcranial direct current stimulation (tDCS) on balance improvement: A systematic review and meta-analysis. Somatosens Mot Res. 2019;36(2):122-35. doi: 10.1080/08990220.2019.1624517. [PubMed: 31181963].
  4. Yadolahi F, Roostayi MM, Khalkhali-Zavieh M, Rahimi A, Mehrpour M. Modulating neuronal networks to enhance postural control: A review of transcranial direct current stimulation approach. Iran Red Crescent Med J. 2019;21(8). doi: 10.5812/ircmj.90337.
  5. Nomura T, Kirimoto H. Anodal transcranial direct current stimulation over the supplementary motor area improves anticipatory postural adjustments in older adults. Front Hum Neurosci. 2018;12:317. doi: 10.3389/fnhum.2018.00317. [PubMed: 30123118]. [PubMed Central: PMC6086140].
  6. Manor B, Zhou J, Jor'dan A, Zhang J, Fang J, Pascual-Leone A. Reduction of dual-task costs by noninvasive modulation of prefrontal activity in healthy elders. J Cogn Neurosci. 2016;28(2):275-81. doi: 10.1162/jocn_a_00897. [PubMed: 26488591]. [PubMed Central: PMC4751581].
  7. Craig CE, Doumas M. Anodal transcranial direct current stimulation shows minimal, measure-specific effects on dynamic postural control in young and older adults: A double blind, sham-controlled study. PLoS One. 2017;12(1). e0170331. doi: 10.1371/journal.pone.0170331. [PubMed: 28099522]. [PubMed Central: PMC5242524].
  8. Ehsani F, Samaei A, Zoghi M, Hedayati R, Jaberzadeh S. The effects of cerebellar transcranial direct current stimulation on static and dynamic postural stability in older individuals: A randomized double-blind sham-controlled study. Eur J Neurosci. 2017;46(12):2875-84. doi: 10.1111/ejn.13731. [PubMed: 28973782].
  9. Yogev-Seligmann G, Hausdorff JM, Giladi N. The role of executive function and attention in gait. Mov Disord. 2008;23(3):329-42. quiz 472. doi: 10.1002/mds.21720. [PubMed: 18058946]. [PubMed Central: PMC2535903].
  10. Delbroek T, Vermeylen W, Spildooren J. The effect of cognitive-motor dual task training with the biorescue force platform on cognition, balance and dual task performance in institutionalized older adults: A randomized controlled trial. J Phys Ther Sci. 2017;29(7):1137-43. doi: 10.1589/jpts.29.1137. [PubMed: 28744033]. [PubMed Central: PMC5509577].
  11. Baharlouei H, Salavati M, Akhbari B, Mosallanezhad Z, Mazaheri M, Negahban H. Cross-cultural validation of the Falls Efficacy Scale International (FES-I) using self-report and interview-based questionnaires among Persian-speaking elderly adults. Arch Gerontol Geriatr. 2013;57(3):339-44. doi: 10.1016/j.archger.2013.06.005. [PubMed: 23830993].
  12. Ruhe A, Fejer R, Walker B. The test-retest reliability of centre of pressure measures in bipedal static task conditions--a systematic review of the literature. Gait Posture. 2010;32(4):436-45. doi: 10.1016/j.gaitpost.2010.09.012. [PubMed: 20947353].
  13. Piirtola M, Era P. Force platform measurements as predictors of falls among older people - a review. Gerontology. 2006;52(1):1-16. doi: 10.1159/000089820. [PubMed: 16439819].
  14. Lopez D, King HH, Knebl JA, Kosmopoulos V, Collins D, Patterson RM. Effects of comprehensive osteopathic manipulative treatment on balance in elderly patients: A pilot study. J Am Osteopath Assoc. 2011;111(6):382-8. doi: 10.7556/jaoa.2011.111.6.382. [PubMed: 21771924].
  15. Zhou J, Hao Y, Wang Y, Jor'dan A, Pascual-Leone A, Zhang J, et al. Transcranial direct current stimulation reduces the cost of performing a cognitive task on gait and postural control. Eur J Neurosci. 2014;39(8):1343-8. doi: 10.1111/ejn.12492. [PubMed: 24443958]. [PubMed Central: PMC4221849].
  16. Gandiga PC, Hummel FC, Cohen LG. Transcranial DC stimulation (tDCS): A tool for double-blind sham-controlled clinical studies in brain stimulation. Clin Neurophysiol. 2006;117(4):845-50. doi: 10.1016/j.clinph.2005.12.003. [PubMed: 16427357].
  17. Bernard JA, Seidler RD. Moving forward: Age effects on the cerebellum underlie cognitive and motor declines. Neurosci Biobehav Rev. 2014;42:193-207. doi: 10.1016/j.neubiorev.2014.02.011. [PubMed: 24594194]. [PubMed Central: PMC4024443].
  18. MacLullich AM, Edmond CL, Ferguson KJ, Wardlaw JM, Starr JM, Seckl JR, et al. Size of the neocerebellar vermis is associated with cognition in healthy elderly men. Brain Cogn. 2004;56(3):344-8. doi: 10.1016/j.bandc.2004.08.001. [PubMed: 15522773].
  19. Paul R, Grieve SM, Chaudary B, Gordon N, Lawrence J, Cooper N, et al. Relative contributions of the cerebellar vermis and prefrontal lobe volumes on cognitive function across the adult lifespan. Neurobiol Aging. 2009;30(3):457-65. doi: 10.1016/j.neurobiolaging.2007.07.017. [PubMed: 17869383].
  20. Latash ML. Neurophysiological basis of movement. Human Kinetics; 2008.
  21. Shumway-Cook A, Woollacott MH. Motor control: Translating research into clinical practice. Lippincott Williams & Wilkins; 2012. p. 73-6.
  22. Jayaram G, Tang B, Pallegadda R, Vasudevan EV, Celnik P, Bastian A. Modulating locomotor adaptation with cerebellar stimulation. J Neurophysiol. 2012;107(11):2950-7. doi: 10.1152/jn.00645.2011. [PubMed: 22378177]. [PubMed Central: PMC3378372].
  23. Ferrucci R, Priori A. Transcranial cerebellar direct current stimulation (tcDCS): Motor control, cognition, learning and emotions. Neuroimage. 2014;85 Pt 3:918-23. doi: 10.1016/j.neuroimage.2013.04.122. [PubMed: 23664951].
  24. Celnik P. Understanding and modulating motor learning with cerebellar stimulation. Cerebellum. 2015;14(2):171-4. doi: 10.1007/s12311-014-0607-y. [PubMed: 25283180]. [PubMed Central: PMC4348328].
  25. Foerster A, Melo L, Mello M, Castro R, Shirahige L, Rocha S, et al. Cerebellar transcranial direct current stimulation (ctDCS) impairs balance control in healthy individuals. Cerebellum. 2017;16(4):872-5. doi: 10.1007/s12311-017-0863-8. [PubMed: 28456902].
  26. Inukai Y, Saito K, Sasaki R, Kotan S, Nakagawa M, Onishi H. Influence of transcranial direct current stimulation to the cerebellum on standing posture control. Front Hum Neurosci. 2016;10:325. doi: 10.3389/fnhum.2016.00325. [PubMed: 27458358]. [PubMed Central: PMC4935689].
  27. Steiner KM, Enders A, Thier W, Batsikadze G, Ludolph N, Ilg W, et al. Cerebellar tDCS does not improve learning in a complex whole body dynamic balance task in young healthy subjects. PLoS One. 2016;11(9). e0163598. doi: 10.1371/journal.pone.0163598. [PubMed: 27669151]. [PubMed Central: PMC5036893].
  28. Kaminski E, Hoff M, Rjosk V, Steele CJ, Gundlach C, Sehm B, et al. Anodal transcranial direct current stimulation does not facilitate dynamic balance task learning in healthy old adults. Front Hum Neurosci. 2017;11:16. doi: 10.3389/fnhum.2017.00016. [PubMed: 28197085]. [PubMed Central: PMC5281631].
  29. Ridding MC, Ziemann U. Determinants of the induction of cortical plasticity by non-invasive brain stimulation in healthy subjects. J Physiol. 2010;588(Pt 13):2291-304. doi: 10.1113/jphysiol.2010.190314. [PubMed: 20478978]. [PubMed Central: PMC2915507].
  30. Dutta A, Chugh S, Banerjee A, Dutta A. Point-of-care-testing of standing posture with Wii balance board and Microsoft Kinect during transcranial direct current stimulation: A feasibility study. NeuroRehabilitation. 2014;34(4):789-98. doi: 10.3233/NRE-141077. [PubMed: 24784496].
  31. Kaminski E, Steele CJ, Hoff M, Gundlach C, Rjosk V, Sehm B, et al. Transcranial direct current stimulation (tDCS) over primary motor cortex leg area promotes dynamic balance task performance. Clin Neurophysiol. 2016;127(6):2455-62. doi: 10.1016/j.clinph.2016.03.018. [PubMed: 27178865].
  32. Costa-Ribeiro A, Maux A, Bosford T, Aoki Y, Castro R, Baltar A, et al. Transcranial direct current stimulation associated with gait training in Parkinson's disease: A pilot randomized clinical trial. Dev Neurorehabil. 2017;20(3):121-8. doi: 10.3109/17518423.2015.1131755. [PubMed: 26864140].
  33. Jafarzadeh A, Ehsani F, Yosephi MH, Zoghi M, Jaberzadeh S. Concurrent postural training and M1 anodal transcranial direct current stimulation improve postural impairment in patients with chronic low back pain. J Clin Neurosci. 2019;68:224-34. doi: 10.1016/j.jocn.2019.07.017. [PubMed: 31350080].
  34. Sohn MK, Jee SJ, Kim YW. Effect of transcranial direct current stimulation on postural stability and lower extremity strength in hemiplegic stroke patients. Ann Rehabil Med. 2013;37(6):759-65. doi: 10.5535/arm.2013.37.6.759. [PubMed: 24466510]. [PubMed Central: PMC3895515].
  35. Kim CR, Kim DY, Kim LS, Chun MH, Kim SJ, Park CH. Modulation of cortical activity after anodal transcranial direct current stimulation of the lower limb motor cortex: A functional MRI study. Brain Stimul. 2012;5(4):462-7. doi: 10.1016/j.brs.2011.08.002. [PubMed: 21962977].
  36. Roche N, Lackmy A, Achache V, Bussel B, Katz R. Impact of transcranial direct current stimulation on spinal network excitability in humans. J Physiol. 2009;587(Pt 23):5653-64. doi: 10.1113/jphysiol.2009.177550. [PubMed: 19805746]. [PubMed Central: PMC2805376].
  37. Debarnot U, Neveu R, Samaha Y, Saruco E, Macintyre T, Guillot A. Acquisition and consolidation of implicit motor learning with physical and mental practice across multiple days of anodal tDCS. Neurobiol Learn Mem. 2019;164:107062. doi: 10.1016/j.nlm.2019.107062. [PubMed: 31377178].
  38. Kaski D, Quadir S, Patel M, Yousif N, Bronstein AM. Enhanced locomotor adaptation aftereffect in the "broken escalator" phenomenon using anodal tDCS. J Neurophysiol. 2012;107(9):2493-505. doi: 10.1152/jn.00223.2011. [PubMed: 22323638]. [PubMed Central: PMC3362242].
  39. Madhavan S, Weber KA 2nd, Stinear JW. Non-invasive brain stimulation enhances fine motor control of the hemiparetic ankle: Implications for rehabilitation. Exp Brain Res. 2011;209(1):9-17. doi: 10.1007/s00221-010-2511-0. [PubMed: 21170708].
  40. Tanaka S, Hanakawa T, Honda M, Watanabe K. Enhancement of pinch force in the lower leg by anodal transcranial direct current stimulation. Exp Brain Res. 2009;196(3):459-65. doi: 10.1007/s00221-009-1863-9. [PubMed: 19479243]. [PubMed Central: PMC2700246].
  41. Kamali AM, Saadi ZK, Yahyavi SS, Zarifkar A, Aligholi H, Nami M. Transcranial direct current stimulation to enhance athletic performance outcome in experienced bodybuilders. PLoS One. 2019;14(8). e0220363. doi: 10.1371/journal.pone.0220363. [PubMed: 31369607]. [PubMed Central: PMC6675286].
  42. Zhou J, Lo OY, Lipsitz LA, Zhang J, Fang J, Manor B. Transcranial direct current stimulation enhances foot sole somatosensation when standing in older adults. Exp Brain Res. 2018;236(3):795-802. doi: 10.1007/s00221-018-5178-6. [PubMed: 29335751]. [PubMed Central: PMC5828881].
  43. Yosephi MH, Ehsani F, Zoghi M, Jaberzadeh S. Multi-session anodal tDCS enhances the effects of postural training on balance and postural stability in older adults with high fall risk: Primary motor cortex versus cerebellar stimulation. Brain Stimul. 2018;11(6):1239-50. doi: 10.1016/j.brs.2018.07.044. [PubMed: 30017699].