Comparative Study of the Cytotoxic Effect of Silver Nanoparticles on Human Lymphocytes and HPB-ALL Cell Line: As an In Vitro Study


Anti-Cancer Properties
Leukemia Cells
Silver Nanoparticles

How to Cite

Farahani , Z. ., Parivar , K. ., Hayati Roodbari , N. ., & Farhadi , M. . (2020). Comparative Study of the Cytotoxic Effect of Silver Nanoparticles on Human Lymphocytes and HPB-ALL Cell Line: As an In Vitro Study. Iranian Red Crescent Medical Journal, 22(2). Retrieved from


Background: Cancer is currently the second leading cause of death worldwide that is originated from cell growth and proliferation without control. Acute lymphoblastic leukemia (ALL) is one of the types of leukemia that affects lymphocyte maturation and it is common among children. Silver nanoparticles are considered one of the targeted chemotherapy methods by creating cytotoxicity.

Objectives: In this research, a comparative study of cytotoxic effect of silver nanoparticles was evaluated on human lymphocytes and HPB-ALL cell line as an in vitro study.

Methods: In this experimental study, lymphocytes and HPB-ALL cell line were exposed to silver nanoparticles at RPMI 1640 medium culture in order to assess toxicity for 24 hours. To this aim, MTT assay was used to evaluate the toxicity of the silver nanoparticles. DNA fragmentation and apoptosis were evaluated by Gel Electrophoresis and Flow Cytometry, respectively. Moreover, quantitative PCR was performed on bax, bcl-2, and caspase-9 genes.

Results: The results of MTT assay showed IC50 values of silver nanoparticles were 5.87 and 2.68 μg/mL for lymphocytes and HPB-ALL cell line, respectively. The results showed that silver nanoparticles could split DNA of the HPB-ALL cell line more than DNA of the lymphocytes during DNA fragmentation. Flow Cytometry results indicated that the early apoptosis was 6.04% and 22.75% in lymphocytes and HPB-ALL cell line, respectively. Moreover, Q-PCR results showed a significant up-regulation of caspase-9 and bax genes and downregulation of bcl-2 gene in comparison to the control group.

Conclusions: The silver nanoparticles had cytotoxic effects on the lymphocytes and HPB-ALL cell line. The results showed that the silver nanoparticle had a significant cytotoxic effect on HPB-ALL cell line.



  1. Nazir S, Hussain T, Ayub A, Rashid U, MacRobert AJ. Nanomaterials in combating cancer: Therapeutic applications and developments. Nanomedicine. 2014;10(1):19-34. doi: 10.1016/j.nano.2013.07.001. [PubMed: 23871761].
  2. Terwilliger T, Abdul-Hay M. Acute lymphoblastic leukemia: A comprehensive review and 2017 update. Blood Cancer J. 2017;7(6). e577. doi: 10.1038/bcj.2017.53. [PubMed: 28665419]. [PubMed Central: PMC5520400].
  3. Fock KM. Review article: The epidemiology and prevention of gastric cancer. Aliment Pharmacol Ther. 2014;40(3):250-60. doi: 10.1111/apt.12814. [PubMed: 24912650].
  4. Taherian A, Fazilati M, Moghadam AT, Tebyanian H. Optimization of purification procedure for horse F(ab´)2 antivenom against Androctonus crassicauda (Scorpion) venom. Trop J Pharm Res. 2018;17(3):409. doi: 10.4314/tjpr.v17i3.4.
  5. Ravindran A, Chandran P, Khan SS. Biofunctionalized silver nanoparticles: advances and prospects. Colloids Surf B Biointerfaces. 2013;105:342-52. doi: 10.1016/j.colsurfb.2012.07.036. [PubMed: 23411404].
  6. Wang R, Billone PS, Mullett WM. Nanomedicine in action: An overview of cancer nanomedicine on the market and in clinical trials. J Nanomater. 2013;2013:1-12. doi: 10.1155/2013/629681.
  7. Sukhanova A, Bozrova S, Sokolov P, Berestovoy M, Karaulov A, Nabiev I. Dependence of nanoparticle toxicity on their physical and chemical properties. Nanoscale Res Lett. 2018;13(1):44. doi: 10.1186/s11671-018-2457-x. [PubMed: 29417375]. [PubMed Central: PMC5803171].
  8. Austin LA, Mackey MA, Dreaden EC, El-Sayed MA. The optical, photothermal, and facile surface chemical properties of gold and silver nanoparticles in biodiagnostics, therapy, and drug delivery. Arch Toxicol. 2014;88(7):1391-417. doi: 10.1007/s00204-014-1245-3. [PubMed: 24894431]. [PubMed Central: PMC4136654].
  9. Iravani S, Korbekandi H, Mirmohammadi SV, Zolfaghari B. Synthesis of silver nanoparticles: chemical, physical and biological methods. Res Pharm Sci. 2014;9(6):385-406. [PubMed: 26339255]. [PubMed Central: PMC4326978].
  10. Jeeva K, Thiyagarajan M, Elangovan V, Geetha N, Venkatachalam P. Caesalpinia coriaria leaf extracts mediated biosynthesis of metallic silver nanoparticles and their antibacterial activity against clinically isolated pathogens. Ind Crops Prod. 2014;52:714-20. doi: 10.1016/j.indcrop.2013.11.037.
  11. Jia Z, Sun H, Gu Q. Preparation of Ag nanoparticles with triethanolamine as reducing agent and their antibacterial property. Colloids Surf A. 2013;419:174-9. doi: 10.1016/j.colsurfa.2012.12.003.
  12. Khomarlou N, Aberoomand-Azar P, Lashgari AP, Tebyanian H, Hakakian A, Ranjbar R, et al. Essential oil composition and in vitro antibacterial activity of Chenopodium album subsp. striatum. Acta Biol Hung. 2018;69(2):144-55. doi: 10.1556/018.69.2018.2.4. [PubMed: 29888667].
  13. Mosaddad SA, Tahmasebi E, Yazdanian A, Rezvani MB, Seifalian A, Yazdanian M, et al. Oral microbial biofilms: An update. Eur J Clin Microbiol Infect Dis. 2019;38(11):2005-19. doi: 10.1007/s10096-019-03641-9. [PubMed: 31372904].
  14. Cameron SJ, Hosseinian F, Willmore WG. A current overview of the biological and cellular effects of nanosilver. Int J Mol Sci. 2018;19(7). doi: 10.3390/ijms19072030. [PubMed: 30002330]. [PubMed Central: PMC6073671].
  15. McShan D, Ray PC, Yu H. Molecular toxicity mechanism of nanosilver. J Food Drug Anal. 2014;22(1):116-27. doi: 10.1016/j.jfda.2014.01.010. [PubMed: 24673909]. [PubMed Central: PMC4281024].
  16. Roh JY, Eom HJ, Choi J. Involvement of Caenohabditis elegans MAPK signaling pathways in oxidative stress response induced by silver nanoparticles exposure. Toxicol Res. 2012;28(1):19-24. doi: 10.5487/TR.2012.28.1.019. [PubMed: 24278585]. [PubMed Central: PMC3834395].
  17. Tang J, Lu X, Chen B, Cai E, Liu W, Jiang J, et al. Mechanisms of silver nanoparticles-induced cytotoxicity and apoptosis in rat tracheal epithelial cells. J Toxicol Sci. 2019;44(3):155-65. doi: 10.2131/jts.44.155. [PubMed: 30842368].
  18. Perde-Schrepler M, Florea A, Brie I, Virag P, Fischer-Fodor E, Vâlcan A, et al. Size-dependent cytotoxicity and genotoxicity of silver nanoparticles in cochlear cells in vitro. J Nanomater. 2019;2019:1-12. doi: 10.1155/2019/6090259.
  19. Bressan E, Ferroni L, Gardin C, Rigo C, Stocchero M, Vindigni V, et al. Silver nanoparticles and mitochondrial interaction. Int J Dent. 2013;2013:312747. doi: 10.1155/2013/312747. [PubMed: 24101927]. [PubMed Central: PMC3786470].
  20. Chairuangkitti P, Lawanprasert S, Roytrakul S, Aueviriyavit S, Phummiratch D, Kulthong K, et al. Silver nanoparticles induce toxicity in A549 cells via ROS-dependent and ROS-independent pathways. Toxicol In Vitro. 2013;27(1):330-8. doi: 10.1016/j.tiv.2012.08.021. [PubMed: 22940466].
  21. Lovisolo D, Dionisi M, A. Ruffinatti F, Distasi C. Nanoparticles and potential neurotoxicity: Focus on molecular mechanisms. AIMS Mol Sci. 2018;5(1):1-13. doi: 10.3934/molsci.2018.1.1.
  22. van Aerle R, Lange A, Moorhouse A, Paszkiewicz K, Ball K, Johnston BD, et al. Molecular mechanisms of toxicity of silver nanoparticles in zebrafish embryos. Environ Sci Technol. 2013;47(14):8005-14. doi: 10.1021/es401758d. [PubMed: 23758687]. [PubMed Central: PMC3854648].
  23. Seifi Kafshgari H, Ebrahimzadeh MA, Yazdanian M, Ranjbar R, Tahmasebi E, Mirsaeed SRG, et al. The effect of Citrullus colocynthis extracts on Streptococcus mutans, Candida albicans, normal gingival fibroblast and breast cancer cells. J Biol Res. 2019;92(1). doi: 10.4081/jbr.2019.8201.
  24. Soufdoost RS, Yazdanian M, Tahmasebi E, Yazdanian A, Tebyanian H, Karami A, et al. In vitro and in vivo evaluation of novel Tadalafil/β-TCP/Collagen scaffold for bone regeneration: A rabbit critical-size calvarial defect study. Biocybern Biomed Eng. 2019;39(3):789-96. doi: 10.1016/j.bbe.2019.07.003.
  25. Heidari MF, Arab SS, Noroozi-Aghideh A, Tebyanian H, Latifi AM. Evaluation of the substitutions in 212, 342 and 215 amino acid positions in binding site of organophosphorus acid anhydrolase using the molecular docking and laboratory analysis. Bratisl Lek Listy. 2019;120(2):139-43. doi: 10.4149/BLL_2019_022. [PubMed: 30793618].
  26. Babavalian H, Latifi AM, Shokrgozar MA, Bonakdar S, Tebyanian H, Shakeri F. Cloning and expression of recombinant human platelet-derived growth factor-BB in Pichia Pink. Cell Mol Biol (Noisy-le-grand). 2016;62(8):45-51. [PubMed: 27545214].
  27. Tebyanian H, Mirhosseiny SH, Kheirkhah B, Hassanshahian M, Farhadian H. Isolation and identification of Mycoplasma synoviae from suspected ostriches by polymerase chain reaction, in Kerman Province, Iran. Jundishapur J Microbiol. 2014;7(9). e19262. doi: 10.5812/jjm.19262. [PubMed: 25485069]. [PubMed Central: PMC4255384].
  28. Moadab S, Ahari H, Shahbazzadeh D, Motalebi AA, Anvar AA, Rahmania J, et al. Toxicity study of nanosilver (Nanocid®) on osteoblast cancer cell line. Int Nano Lett. 2011;1(1):11-6.
  29. Shahbazzadeh D, Ahari H, Motalebi AA, Anvar AA, Moaddab S, Asadi T, et al. In vitro effect of Nanosilver toxicity on fibroblast and mesenchymal stem cell lines. Iran J Fisheries Sci. 2011;10(3):487-96.
  30. Mozaffari Dehshiri A, Maryam Hamzelou Moghaddam M, Naghibi F, Honary S, Mosaddegh M. Comparison of the cytotoxic effects of nanosilver and ancient Iranian and Pakistani silver kushtas on primary rat hepatocytes and human cancer cell lines. Iran J Pharm Sci. 2014;10(2):35-46.
  31. Kaba SI, Egorova EM. In vitro studies of the toxic effects of silver nanoparticles on HeLa and U937 cells. Nanotechnol Sci Appl. 2015;8:19-29. doi: 10.2147/NSA.S78134. [PubMed: 25784794]. [PubMed Central: PMC4356696].
  32. Karami A, Tebyanian H, Barkhordari A, Motavallian E, Soufdoost RS, Nourani MR. Healing effects of ointment drug on full-thickness wound. C R Acad Bulg Sci. 2019;72(1):123-9. doi: 10.7546/crabs.2019.01.16.
  33. Shakeri F, Tebyanian H, Karami A, Babavalian H, Tahmasbi MH. Effect of topical phenytoin on wound healing. Trauma Mon. 2016;Inpress(Inpress). doi: 10.5812/traumamon.35488.
  34. Paknejadi M, Bayat M, Salimi M, Razavi V. Concentration- and time-dependent cytotoxicity of silver nanoparticles on normal human skin fibroblast cell line. Iran Red Crescent Med J. 2018;20(10). doi: 10.5812/ircmj.79183.
  35. Govindaraju K, Krishnamoorthy K, Alsagaby SA, Singaravelu G, Premanathan M. Green synthesis of silver nanoparticles for selective toxicity towards cancer cells. IET Nanobiotechnol. 2015;9(6):325-30. doi: 10.1049/iet-nbt.2015.0001. [PubMed: 26647807].
  36. Kulandaivelu B, Gothandam KM. Cytotoxic effect on cancerous cell lines by biologically synthesized silver nanoparticles. Brazil Arch Biol Technol. 2016;59(0). doi: 10.1590/1678-4324-2016150529.
  37. Yuan YG, Zhang S, Hwang JY, Kong IK. Silver nanoparticles potentiates cytotoxicity and apoptotic potential of camptothecin in human cervical cancer cells. Oxid Med Cell Longev. 2018;2018:6121328. doi: 10.1155/2018/6121328. [PubMed: 30647812]. [PubMed Central: PMC6311846].
  38. Baharara J, Namvar F, Ramezani T, Mousavi M, Mohamad R. Silver nanoparticles biosynthesized using Achillea biebersteinii flower extract: apoptosis induction in MCF-7 cells via caspase activation and regulation of Bax and Bcl-2 gene expression. Molecules. 2015;20(2):2693-706. doi: 10.3390/molecules20022693. [PubMed: 25665064]. [PubMed Central: PMC6272258].
  39. Kanipandian N, Li D, Kannan S. Induction of intrinsic apoptotic signaling pathway in A549 lung cancer cells using silver nanoparticles from Gossypium hirsutum and evaluation of in vivo toxicity. Biotechnol Rep (Amst). 2019;23. e00339. doi: 10.1016/j.btre.2019.e00339. [PubMed: 31467862]. [PubMed Central: PMC6713847].