Upregulation of miR-21 and miR-106b in Plasma and Tissues as a Possible Prognostic Marker in Aggressive Breast Cancer



How to Cite

Seyedi Moghaddam , A., Salimi, M., Ranji, N., & Mozdarani, H. (2021). Upregulation of miR-21 and miR-106b in Plasma and Tissues as a Possible Prognostic Marker in Aggressive Breast Cancer. Iranian Red Crescent Medical Journal, 23(10). https://doi.org/10.32592/ircmj.2021.23.10.547


Background: The miRNAs are referred to small non-coding RNAs (consisting of 18 to 25 nucleotides). Functional studies have shown their functions to be oncogenes or tumor suppressor genes in different types of cancers. The miR-106b and miR-21 have been identified to participate in the biological behaviors of cells.

Objectives: This study aimed to evaluate the tissue and plasma levels of miR-21 and miR-106b in patients with breast cancer who were diagnosed with ductal carcinoma.

Methods: In total, 40 cases of breast cancer patients 180 samples were examined in this project. Samples included ductal carcinoma breast tumors (n=40), normal breast tissues of the margin of the tumor (n=40) and 20 samples from unaffected mammary tissue of females undergoing reduction mammoplasty (control group), plasma samples of patients with breast cancer (n=40), and plasma of non-affected individuals (n=40). The expression levels of miR-106b and miR-21 were determined using SYBR Green real-time RT-PCR assay in breast tissues and plasma of cancerous patients in comparison to the controls.

Results: MiR-106b and miR-21 revealed much higher expression in tissues and plasma of patients with breast cancer in comparison to that in the group of control (P<0.001). High levels of mir-106b and miR-21 expression in plasma and tumor tissues were highly correlated with tumors in higher stages and lymph node involvement (P<0.0001).

Conclusion: Based on the obtained results, upregulation of miR-106b and miR-21 in the plasma of patients with breast cancer can act as a possible non-invasive biomarker for breast cancer prognosis. Further follow-up studies are required to confirm this.




  1. Savad S, Mehdipour P, Miryounesi M, Shirkoohi R, Fereidooni F, Mansouri F, et al. Expression analysis of MiR-21, MiR-205, and MiR-342 in breast cancer in Iran. Asian Pac J Cancer Prev. 2012;13(3):873-7. doi: 10.7314/apjcp.2012.13.3.873. [PubMed: 22631664].
  2. Gray JM, Rasanayagam S, Engel C, Rizzo J. State of the evidence 2017: an update on the connection between breast cancer and the environment. Environ Health. 2017;16(1):94. doi: 10.1186/s12940-017-0287-4. [PubMed: 28865460].
  3. Paranjape T, Slack FJ, Weidhaas JB. MicroRNAs: tools for cancer diagnostics. Gut. 2009;58(11):1546-54. doi: 10.1136/gut.2009.179531. [PubMed: 19834118].
  4. Li J, Zhang Z, Chen F, Hu T, Peng W, Gu Q, et al. The diverse oncogenic and tumor suppressor roles of microRNA-105 in cancer. Front Oncol. 2019;9:518. doi: 10.3389/fonc.2019.00518. [PubMed: 31281797].
  5. Palmero EI, de Campos SG, Campos M, de Souza NC, Guerreiro ID, Carvalho AL, et al. Mechanisms and role of microRNA deregulation in cancer onset and progression. Genet Mol Biol. 2011;34(3):363-70. doi: 10.1590/S1415-47572011000300001. [PubMed: 21931505].
  6. Wang W, Luo YP. MicroRNAs in breast cancer: oncogene and tumor suppressors with clinical potential. J Zhejiang Univ Sci B. 2015;16(1):18-31. doi: 10.1631/jzus.B1400184. [PubMed: 25559952].
  7. Adhami M, Haghdoost AA, Sadeghi B, Malekpour Afshar R. Candidate miRNAs in human breast cancer biomarkers: a systematic review. Breast Cancer. 2018;25(2):198-205. doi: 10.1007/s12282-017-0814-8. [PubMed: 29101635].
  8. Karimi Kurdistani Z, Saberi S, Tsai KW, Mohammadi M. MicroRNA-21: mechanisms of oncogenesis and its application in diagnosis and prognosis of gastric cancer. Arch Iran Med. 2015;18(8):524-36. [PubMed: 26265521].
  9. Wu Y, Song Y, Xiong Y, Wang X, Xu K, Han B, et al. MicroRNA-21 (Mir-21) promotes cell growth and invasion by repressing tumor suppressor PTEN in colorectal cancer. Cell Physiol Biochem. 2017;43(3):945-58. doi: 10.1159/000481648. [PubMed: 28957811].
  10. Leite KR, Reis ST, Viana N, Morais DR, Moura CM, Silva IA, et al. Controlling RECK miR21 promotes tumor cell invasion and is related to biochemical recurrence in prostate cancer. J Cancer. 2015;6(3):292-301. doi: 10.7150/jca.11038. [PubMed: 25663948].
  11. Lou Y, Yang X, Wang F, Cui Z, Huang Y. MicroRNA-21 promotes the cell proliferation, invasion and migration abilities in ovarian epithelial carcinomas through inhibiting the expression of PTEN protein. Int J Mol Med. 2010;26(6):819-27. doi: 10.3892/ijmm_00000530. [PubMed: 21042775].
  12. Yang C, Dou R, Yin T, Ding J. MiRNA-106b-5p in human cancers: diverse functions and promising biomarker. Biomed Pharmacother. 2020;127:110211. doi: 10.1016/j.biopha.2020.110211. [PubMed: 32422566].
  13. Liu K, Pan X, Peng X, Zhang C, Li H, Guan X, et al. Associations of high expression of miR-106b-5p detected from FFPE sample with poor prognosis of RCC patients. Pathol Res Pract. 2019;215(6):152391. doi: 10.1016/j.prp.2019.03.019. [PubMed: 31076282].
  14. Cai K, Wang Y, Bao X. MiR-106b promotes cell proliferation via targeting RB in laryngeal carcinoma. J Exp Clin Cancer Res. 2011;30(1):73. doi: 10.1186/1756-9966-30-73. [PubMed: 21819631].
  15. Zhao Y, Ren Q, Zhu K. Serum miR-106b upregulation predicts poor prognosis in patients with colorectal cancer. Int J Clin Exp Pathol. 2018;11(8):4197-204. [PubMed: 31949814].
  16. Liu F, Gong J, Huang W, Wang Z, Wang M, Yang J, et al. MicroRNA-106b-5p boosts glioma tumorigensis by targeting multiple tumor suppressor genes. Oncogene. 2014;33(40):4813-22. doi: 10.1038/onc.2013.428. [PubMed: 24166509].
  17. Yau WL, Lam CS, Ng L, Chow AK, Chan ST, Chan JY, et al. Over-expression of miR-106b promotes cell migration and metastasis in hepatocellular carcinoma by activating epithelial-mesenchymal transition process. PLoS One. 2013;8(3):e57882. doi: 10.1371/journal.pone.0057882. [PubMed: 23483935].
  18. Cheng Y, Guo Y, Zhang Y, You K, Li Z, Geng L. MicroRNA-106b is involved in transforming growth factor β1-induced cell migration by targeting disabled homolog 2 in cervical carcinoma. J Exp Clin Cancer Res. 2016;35:11. doi: 10.1186/s13046-016-0290-6. [PubMed: 26769181].
  19. 19.              Chen S, Chen X, Xiu YL, Sun KX, Zhao Y. Inhibition of ovarian epithelial carcinoma tumorigenesis and progression by microRNA 106b mediated through the RhoC pathway. PLoS One. 2015;10(5):e0125714. doi: 10.1371/journal.pone.0125714. [PubMed: 25933027].
  20. Zeng Q, Jin C, Chen W, Xia F, Wang Q, Fan F, et al. Downregulation of serum miR-17 and miR-106b levels in gastric cancer and benign gastric diseases. Chin J Cancer Res. 2014;26(6):711-6. doi: 10.3978/j.issn.1000-9604.2014.12.03. [PubMed: 25561770].
  21. Yang C, Dou R, Yin T, Ding J. MiRNA-106b-5p in human cancers: diverse functions and promising biomarker. Biomed Pharmacother. 2020;127:110211. doi: 10.1016/j.biopha.2020.110211. [PubMed: 32422566].
  22. Sun W, Lan X, Zhang H, Wang Z, Dong W, He L, et al. NEAT1_2 functions as a competing endogenous RNA to regulate ATAD2 expression by sponging microRNA-106b-5p in papillary thyroid cancer. Cell Death Dis. 2018;9(3):380. doi: 10.1038/s41419-018-0418-z. [PubMed: 29515109].
  23. Badr FM. Potential role of miR-21 in breast cancer diagnosis and therapy. JSM Biotechnol Biomed Eng. 2016;3(5):1068.
  24. Fesler A, Jiang J, Zhai H, Ju J. Circulating microRNA testing for the early diagnosis and follow-up of colorectal cancer patients. Mol Diagn Ther. 2014;18(3):303-8. doi: 10.1007/s40291-014-0089-0. [PubMed: 24566942].
  25. Filipow S, Laczmanski L. Blood circulating miRNAs as cancer biomarkers for diagnosis and surgical treatment response. Front Genet. 2019;10:169. doi: 10.3389/fgene.2019.00169. [PubMed: 30915102].
  26. Testa U, Castelli G, Pelosi E. Breast cancer: a molecularly heterogenous disease needing subtype-specific treatments. Med Sci (Basel). 2020;8(1):18. doi: 10.3390/medsci8010018. [PubMed: 32210163].
  27. Mehrgou A, Akouchekian M. The importance of BRCA1 and BRCA2 genes mutations in breast cancer development. Med J Islam Repub Iran. 2016;30:369. [PubMed: 27493913].
  28. Kreth S, Hübner M, Hinske LC. MicroRNAs as clinical biomarkers and therapeutic tools in perioperative medicine. Anesth Analg. 2018;126(2):670-81. doi: 10.1213/ANE.0000000000002444. [PubMed: 28922229].
  29. Shi BM, Lu W, Ji K, Wang YF, Xiao S, Wang XY. Study on the value of serum miR-106b for the early diagnosis of hepatocellular carcinoma. World J Gastroenterol. 2017;23(20):3713-20. doi: 10.3748/wjg.v23.i20.3713. [PubMed: 28611524].
  30. Zhu M, Huang Z, Zhu D, Zhou X, Shan X, Qi L, et al. A panel of microRNA signature in serum for colorectal cancer diagnosis. Oncotarget. 2017;8(10):17081-91. doi: 10.18632/oncotarget.15059. [PubMed: 28177881].
  31. Yu LA, Zhang BL, Yang MY, Liu H, Xiao CH, Zhang SG, et al. MicroRNA106b-5p promotes hepatocellular carcinoma development via modulating FOG2. Onco Targets Ther. 2019;12:5639-47. doi: 10.2147/OTT.S203382. [PubMed: 31406464].
  32. Sánchez DB, Canon CA, Torres AP, Velázquez AR, Barrios RG, Espinosa LC, et al. The Promising Role of miR-21 as a cancer biomarker and its importance in RNA-based therapeutics. Mol Ther Nucleic Acids. 2020;20:409-20. doi: 10.1016/j.omtn.2020.03.003. [PubMed: 32244168].
  33. Si H, Sun X, Chen Y, Cao Y, Chen S, Wang H, et al. Circulating microRNA-92a and microRNA-21 as novel minimally invasive biomarkers for primary breast cancer. J Cancer Res Clin Oncol. 2013;139(2):223-9. doi: 10.1007/s00432-012-1315-y. [PubMed: 23052693].
  34. Papadaki C, Stoupis G, Tsalikis L, Monastirioti A, Papadaki M, Maliotis N, et al. Circulating miRNAs as a marker of metastatic disease and prognostic factor in metastatic breast cancer. Oncotarget. 2019;10(9):966-81. doi: 10.18632/oncotarget.26629. [PubMed: 30847025].