A Predictive Model, Using Data Mining Approach for Clinical Decision-making: Value of Laboratory Tests in COVID-19 Hospitalized Patients




Machine learning
Decision tree model
Laboratory test
Risk factor
Odds ratio

How to Cite

Mousavi, A. ., Rezaei, S. ., Salamzadeh, J. ., Mirzazadeh, A. ., Peiravian, F. ., & yousefi, N. (2021). A Predictive Model, Using Data Mining Approach for Clinical Decision-making: Value of Laboratory Tests in COVID-19 Hospitalized Patients. Iranian Red Crescent Medical Journal, 23(5). https://doi.org/10.32592/ircmj.2021.23.5.508 (Original work published May 18, 2021)


Background: Reports, mostly from high-income countries, have shown a wide range of symptoms, clinical profiles, and outcomes for patients diagnosed with COVID-19. However, little is known about these issues in developing countries.

Objectives: This research used medical records in 15 hospitals in Tehran, the capital city of Iran, to assess predictors of in-hospital mortality in patients diagnosed with COVID-19.

Methods: The required information was extracted from patients' medical records, including age, gender, laboratory data (complete blood count, serum electrolytes, and liver, renal, and muscle injury tests) at admission, and the outcome of in-hospital mortality (yes/no) of 4,542 adult patients with confirmed COVID-19. This research used logistic regression to assess the predictors for mortality (measured as adjusted odds ratio [aOR]) and Chi-square automatic interaction detector to classify high-risk patients in different age groups as a decision tree model. Two models were developed through a machine learning approach.

Results: Overall, 822 (18.09%) cases passed away in the hospital. Mortality risk was increased from 4.33% in patients aged 18-40 years old to 40.96% in those aged 80+ years old. After adjusting for covariates, age (aOR 1.62 to 7.05 vs. those aged 18-40 years old), high aspartate transaminase (aOR 1.64 to 3.21), high alkaline phosphatase (aOR=2.17), low sodium (aOR=1.31), high sodium level (aOR=5.05), high potassium (aOR=2.41), low calcium (aOR=2.31), high creatine phosphokinase (aOR=2.21 to 2.24), and high creatinine (aOR=3.43) were significantly associated with in-hospital mortality.

Conclusion: Based on the results of our study, the mortality rate was high among in-hospital patients, particularly among older age and those who had liver and renal dysfunctions, muscle injury, and electrolyte imbalance at admission. Triage and special care for these high-risk patients can improve in-hospital outcomes.




  1. Lillie PJ, Samson A, Li A, Adams K, Capstick R, Barlow GD, et al. Novel coronavirus disease (Covid-19): The first two patients in the UK with person to person transmission. J Infect. 2020;80(5):578-606. doi: 10.1016/j.jinf.2020.02.020. [PubMed: 32119884].
  2. Chen G, Wu D, Guo W, Cao Y, Huang D, Wang H, et al. Clinical and immunological features of severe and moderate coronavirus disease 2019. J Clin Invest. 2020;130(5):2620-9. doi: 10.1172/JCI137244. [PubMed: 32217835].
  3. Shirani K, Toghyani A. COVID-19 pneumonia with scant respiratory symptoms. J Res Med Sci. 2020;25:82. doi: 10.4103/jrms.JRMS_326_20. [PubMed: 33088319].
  4. Takian A, Raoofi A, Kazempour-Ardebili S. COVID-19 battle during the toughest sanctions against Iran. Lancet. 2020;395(10229):1035-6. doi: 10.1016/S0140-6736(20)30668-1. [PubMed: 32199073].
  5. Castro MC, de Carvalho LR, Chin T, Kahn R, Franca GVA, Macario EM, et al. Demand for hospitalization services for COVID-19 patients in Brazil. MedRxiv. 2020;3:1-16. doi: 10.1101/2020.03.30.20047662.
  6. Kuo CY, Yu LC, Chen HC, Chan CL. Comparison of models for the prediction of medical costs of spinal fusion in Taiwan diagnosis-related groups by machine learning algorithms. Healthc Inform Res. 2018;24(1):29-37. doi: 10.4258/hir.2018.24.1.29. [PubMed: 29503750].
  7. Maniruzzaman M, Rahman MJ, Ahammed B, Abedin MM. Classification and prediction of diabetes disease using machine learning paradigm. Heal Inf Sci Syst. 2020;8(1):7. doi: 10.1007/s13755-019-0095-z. [PubMed: 31949894].
  8. Hersh AL, Black WC, Tosteson ANA. Estimating the population impact of an intervention: a decision-analytic approach. Stat Methods Med Res. 1999;8(4):311-30. doi: 10.1177/096228029900800404. [PubMed: 10730336].
  9. McCormick K, Abbott D. IBM SPSS modeler cookbook. Birmingham: Packt Publ; 2020.
  10. Zandkarimi E, Moradi G, Mohsenpour B. The prognostic factors affecting the survival of Kurdistan province COVID-19 patients: a cross-sectional study from February to May 2020. Int J Heal Policy Manag. 2020;In Press. doi: 10.34172/ijhpm.2020.155. [PubMed: 32861230].
  11. Sun H, Ning R, Tao Y, Yu C, Deng X, Zhao C, et al. Risk factors for mortality in 244 older adults with COVID-19 in Wuhan, China: a retrospective study. Am Geriatr Soc. 2020;6(6):E19-23. doi: 10.1111/jgs.16533. [PubMed: 32383809].
  12. Sharma G, Goodwin J. Effect of aging on respiratory system physiology and immunology. Clin Interv Aging. 2006;1(3):253-60. doi: 10.2147/ciia.2006.1.3.253. [PubMed: 18046878].
  13. Fan Z, Chen L, Li J, Cheng X, Yang J, Tian C, et al. Clinical features of COVID-19-related liver functional abnormality. Clin Gastroenterol Hepatol. 2020;18(7):1561-6. doi: 10.1016/j.cgh.2020.04.002. [PubMed: 32283325].
  14. Chen N, Zhou M, Dong X, Qu J, Gong F, Han Y, et al. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. Lancet. 2020;395(10223):507-13. doi: 10.1016/S0140-6736(20)30211-7. [PubMed: 32007143].
  15. Cannistrà M, Ruggiero M, Zullo A, Gallelli G, Serafini S, Maria M, et al. Hepatic ischemia reperfusion injury: A systematic review of literature and the role of current drugs and biomarkers. Int J Surg. 2016;33(Suppl 1):S57-70. doi: 10.1016/j.ijsu.2016.05.050. [PubMed: 27255130].
  16. Xu L, Liu J, Lu M, Yang D, Zheng X. Liver injury during highly pathogenic human coronavirus infections. Liver Int. 2020;40(5):998-1004. doi: 10.1111/liv.14435. [PubMed: 32170806].
  17. Zhang C, Shi L, Wang FS. Liver injury in COVID-19: management and challenges. Lancet Gastroenterol Hepatol. 2020;5(5):428-30. doi: 10.1016/S2468-1253(20)30057-1. [PubMed: 32145190].
  18. Sun JK, Zhang WH, Zou L, Liu Y, Li JJ, Kan XH, et al. Serum calcium as a biomarker of clinical severity and prognosis in patients with coronavirus disease 2019: a retrospective cross-sectional study. Crit Care Emerg Med. 2020;12(12):11287-95. doi: 10.18632/aging.103526. [PubMed: 32589164].
  19. Grinstein S, Klip A. Calcium homeostasis and the activation of calcium channels in cells of the immune system. Bull N Y Acad Med. 1989;65(1):69-79. [PubMed: 2557949].
  20. El-kurdi B, Khatua B, Rood C, Snozek C, Cartin-Ceba R, Singh VP, et al. Mortality from covid-19 increases with unsaturated fat, and may be reduced by early calcium and albumin supplementation. Gastroenterology. 2020;159(3):1015-8. doi: 10.1053/j.gastro.2020.05.057. [PubMed: 32470338].
  21. Lippi G, South AM, Henry BM. Electrolyte imbalances in patients with severe coronavirus disease 2019 (COVID-19). Ann Clin Biochem. 2020;57(3):262-5. doi: 10.1177/0004563220922255. [PubMed: 32266828].
  22. Cao YC, Deng QX, Dai SX. Remdesivir for severe acute respiratory syndrome coronavirus 2 causing COVID-19: An evaluation of the evidence. Travel Med Infect Dis. 2020;35:101647. doi: 10.1016/j.tmaid.2020.101647.[PubMed: 32247927].
  23. Luo Y, Li Y, Dai J. Low blood sodium increases risk and severity of COVID-19: a systematic review, meta-analysis and retrospective cohort study. MedRxiv. 2020;5:1-24. doi: 10.1101/2020.05.18.20102509.
  24. Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020;395(10223):497-506. doi: 10.1016/S0140-6736(20)30183-5. [PubMed: 31986264].
  25. Drogué HJ, Adias NE. Hypernatremia. N Engl J Med. 2000;342(20):1493-9. doi: 10.1056/NEJM200005183422006. [PubMed: 10816188].
  26. Kovesdy CP, Lott EH, Lu JL, Malakauskas SM, Ma JZ, Molnar MZ, et al. Hyponatremia, hypernatremia, and mortality in patients with chronic kidney disease with and without congestive heart failure. Circulation. 2012;125(5):677-84. doi: 10.1161/CIRCULATIONAHA.111.065391. [PubMed: 22223429].
  27. Parham WA, Mehdirad AA, Biermann KM, Fredman CS. Hyperkalemia revisited. Texas Hear Inst J. 2006;33(1):40-7. [PubMed: 16572868].
  28. Do TT. What is the role of creatine phosphokinase (CPK) determination in the evaluation of muscular dystrophy? Medscape. Available at: https://www.medscape.com/answers/1259041-96568/what-is-the-role-of-creatine-phosphokinase-cpk-determination-in-the-evaluation-of-muscular-dystrophy; 2018.  
  29. Kessler HA, Trenholme GM, Vogelzang NJ, Semel JD, Harris AA, Levin S, et al. Elevated creatine phosphokinase levels associated with influenza A/Texas/1/77 infection. Scand J Infect Dis. 2015;15(1):7-10. doi: 10.3109/inf.1983.15.issue-1.02. [PubMed: 6844879].
  30. Suwanwongse K, Shabarek N. Rhabdomyolysis as a presentation of 2019 novel coronavirus disease. Cureus. 2020;12(4):e7561. doi: 10.7759/cureus.7561. [PubMed: 32382463].
  31. Ayala E, Kagawa FT, Wehner JH, Tam J, Upadhyay D. Rhabdomyolysis associated with 2009 influenza A(H1N1). JAMA. 2009;302(17):1863-4. doi: 10.1001/jama.2009.1582. [PubMed: 19887664].
  32. Laboratory features associated with severe COVID-19. UpToDate. Available at: URL: https://www.uptodate.com/contents/image/print?imageKey=ID%2F127820&topicKey=ID%2F127429&source=see_link; 2021.
  33. Wang L. C-reactive protein levels in the early stage of COVID-19. Med Mal Infect. 2020;50(4):332-4. doi: 10.1016/j.medmal.2020.03.007. [PubMed: 32243911].
  34. Cheng Y, Luo R, Wang K, Zhang M, Wang Z, Dong L, et al. Kidney disease is associated with in-hospital death of patients with COVID-19. Kidney Int. 2020;97(5):829-38. doi: 10.1016/j.kint.2020.03.005. [PubMed: 32247631].
  35. Lin W, Hu L, Zhang Y, Ooi JD, Meng T, Jin P, et al. Single-cell analysis of ACE2 expression in human kidneys and bladders reveals a potential route of 2019-nCoV infection. BioRxiv. 2020;8:1-12. doi: 10.1101/2020.02.08.939892.
  36. Singhal T. A review of coronavirus disease-2019 (COVID-19). Indian J Pediatr. 2020;87(4):281-6. doi: 10.1007/s12098-020-03263-6.