Factors Affecting the Prepositioning of Relief Items for Natural Disasters: A Systematic Review
PDF
HTML

Keywords

Disaster
Humanitarian Logistics
Prepositioning
Relief Items
Supply Chain

How to Cite

Sharifi-Sedeh , M., Ardalan, A., Torabi, S. A. ., Allahbakhshi, K., & Khorasani-Zavareh , D. . (2020). Factors Affecting the Prepositioning of Relief Items for Natural Disasters: A Systematic Review. Iranian Red Crescent Medical Journal, 22(1). Retrieved from https://ircmj.com/index.php/IRCMJ/article/view/480

Abstract

Context: Humanitarian logistics aims to reduce the suffering of disaster victims by fulfilling their immediate needs. A key component of humanitarian logistics is the prepositioning of relief items (such as water and food) for effective emergency response.

Objectives: This study aimed to explore factors affecting the prepositioning of relief items for natural disasters.

Data Sources: This was a systematic review. Relevant articles were retrieved from Google Scholar, PubMed, Web of Science, and Scopus databases. We also assessed other gray literature.

Data Extraction: Data were summarized and analyzed through thematic content analysis. Overall, 22 final articles were included in the study. Articles that referred to the prepositioning of relief items were included in the study.

Results: Factors affecting the prepositioning of relief items were categorized into four main categories and eight sub-categories. These categories included site selection, preparation, and management of warehouse (with two sub-categories of warehouse site selection, warehouse workforce); risk management studies (with two sub-categories of uncertainty, and demand estimation); infrastructures (with two sub-categories of transportation infrastructures, and other infrastructures); and financial and sociopolitical factors (with two sub-categories of financial problems and limitations sociopolitical factors).

Conclusions: Appropriate identification of factors that affect relief-item prepositioning can help decision-makers design appropriate models for prepositioning.

 

PDF
HTML

References

  1. Torabi SA, Shokri I, Tofighi S, Heydari J. Integrated relief pre-positioning and procurement planning in humanitarian supply chains. Transport Res E Logist Transport Rev. 2018;113:123-46. doi: 10.1016/j.tre.2018.03.012.
  2. Apta A. Foundation trends and technology, information operation management. Humanitarian logistics: A new field of research and action. Now Foundations and Trends; 2009. p. 1-100. doi: 10.1561/0200000014.
  3. Bai X, Gao J, Liu Y. Prepositioning emergency supplies under uncertainty: A parametric optimization method. Eng Optim. 2017;50(7):1114-33. doi: 10.1080/0305215x.2017.1328508.
  4. Rawls CG, Turnquist MA. Pre-positioning of emergency supplies for disaster response. Transport Res Part B Methodol. 2010;44(4):521-34. doi: 10.1016/j.trb.2009.08.003.
  5. Duran S, Gutierrez MA, Keskinocak P. Pre-positioning of emergency items for CARE international. Interfaces. 2011;41(3):223-37. doi: 10.1287/inte.1100.0526.
  6. Renkli C, Duran S. Pre-positioning disaster response facilities and relief items. Hum Ecol Risk Assess. 2015;21(5):1169-85. doi: 10.1080/10807039.2014.957940.
  7. Thomas AS, Kopczak LR. From logistics to supply chain management: The path forward in the humanitarian sector. Fritz Institute; 2005. 14 p.
  8. Opit PF, Nakade K. Emergency response model of stock-prepositioning with transportation constraints. 2015 IEEE International Conference on Industrial Engineering and Engineering Management (IEEM). 2015. p. 239-43.
  9. Madu NC, Kuei CH. Disaster relief supply chain quality management (DRSCQM). Int J Qual Reliab Manag. 2015;31(9):1052-67. doi: 10.1108/ijqrm-08-2013-0136.
  10. Beamon BM, Kotleba SA. Inventory management support systems for emergency humanitarian relief operations in South Sudan. Int J Logist Manag. 2006;17(2):187-212. doi: 10.1108/09574090610689952.
  11. Caunhye AM, Nie X, Pokharel S. Optimization models in emergency logistics: A literature review. Soc Econ Plann Sci. 2012;46(1):4-13. doi: 10.1016/j.seps.2011.04.004.
  12. Ergun O, Karakus G, Keskinocak P, Swann J, Villareal M. Overview of supply chains for humanitarian logistics. Models and algorithms for optimization in logistics. Dagstuhl, Germany: Schloss Dagstuhl; 2009.
  13. Bozkurt M. The effects of natural disaster trends on the pre-positioning implementation in humanitarian logistics networks [dissertation]. Ankara: METU; 2011.
  14. Carroll A, Tatham PH, Neu J. Volatility, unpredictability and asymmetry: An organising framework for humanitarian logistics operations? Manag Res News. 2009;32(11):1024-37. doi: 10.1108/01409170910998264.
  15. Mochizuki J, Toyasaki F, Sigala IF. Toward resilient humanitarian cooperation: Examining the performance of horizontal cooperation among humanitarian organizations using an agent-based modeling (ABM) approach. J Nat Disast Sci. 2015;36(2):35-52. doi: 10.2328/jnds.36.35.
  16. Gutjahr WJ, Nolz PC. Multicriteria optimization in humanitarian aid. Eur J Oper Res. 2016;252(2):351-66. doi: 10.1016/j.ejor.2015.12.035.
  17. Balcik B, Bozkir CDC, Kundakcioglu OE. A literature review on inventory management in humanitarian supply chains. Surv Oper Res Manag Sci. 2017;21(2):101-16. doi: 10.1016/j.sorms.2016.10.002.
  18. Moher D, Liberati A, Tetzlaff J, Altman DG, Prisma Group. Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. PLoS Med. 2009;6(7). e1000097. doi: 10.1371/journal.pmed.1000097. [PubMed: 19621072]. [PubMed Central: PMC2707599].
  19. Critical appraisal skills programme (CASP). 2018. Available from: https://casp-uk.net/casp-tools-checklists/Access.
  20. Farahani R, Rezapour S. Logistics operations and management: Concepts and models. Elsevier; 2011.
  21. Balcik B, Beamon BM. Facility location in humanitarian relief. Int J Logist Res Appl. 2008;11(2):101-21. doi: 10.1080/13675560701561789.
  22. Oloruntoba R, Gray R. Humanitarian aid: An agile supply chain? Supply Chain Manag. 2006;11(2):115-20. doi: 10.1108/13598540610652492.
  23. Akgun I, Gumusbuga F, Tansel B. Risk based facility location by using fault tree analysis in disaster management. Omega. 2015;52:168-79. doi: 10.1016/j.omega.2014.04.003.
  24. Alem D, Clark A, Moreno A. Stochastic network models for logistics planning in disaster relief. Eur J Oper Res. 2016;255(1):187-206. doi: 10.1016/j.ejor.2016.04.041.
  25. Babaei A, Shahanaghi K. A novel algorithm for identifying and analyzing humanitarian relief logistics problems: Studying uncertainty on the basis of interaction with the decision maker. Process Integrat Optim Sustain. 2018;2(1):27-45. doi: 10.1007/s41660-017-0029-7.
  26. Campbell AM, Jones PC. Prepositioning supplies in preparation for disasters. Eur J Oper Res. 2011;209(2):156-65. doi: 10.1016/j.ejor.2010.08.029.
  27. Davis LB, Samanlioglu F, Qu X, Root S. Inventory planning and coordination in disaster relief efforts. Int J Prod Econ. 2013;141(2):561-73. doi: 10.1016/j.ijpe.2012.09.012.
  28. Galindo G, Batta R. Prepositioning of supplies in preparation for a hurricane under potential destruction of prepositioned supplies. Soc Econ Plann Sci. 2013;47(1):20-37. doi: 10.1016/j.seps.2012.11.002.
  29. Charles A, Lauras M, Van Wassenhove LN, Dupont L. Designing an efficient humanitarian supply network. J Oper Manag. 2016;47-48(1):58-70. doi: 10.1016/j.jom.2016.05.012.
  30. Richardson D, de Leeuw S, Vis IFA. Conceptualising inventory prepositioning in the humanitarian sector. Collaborative networks for a sustainable world. Springer; 2010. p. 149-56. doi: 10.1007/978-3-642-15961-9_17.
  31. John L, Ramesh A, Sridharan R. Humanitarian supply chain management: A critical review. Int J Serv Oper Manag. 2012;13(4):498. doi: 10.1504/ijsom.2012.050143.
  32. Van Wassenhove LN, Pedraza Martinez AJ. Using OR to adapt supply chain management best practices to humanitarian logistics. Int Trans Oper Res. 2012;19(1-2):307-22. doi: 10.1111/j.1475-3995.2011.00792.x.
  33. Leeuw S, Vis IFA, Jonkman SN. Exploring logistics aspects of flood emergency measures. J Conting Crisis Manag. 2012;20(3):166-79. doi: 10.1111/j.1468-5973.2012.00667.x.
  34. Kunz N, Reiner G. A meta‐analysis of humanitarian logistics research. J Hum Logistics Supply Chain Manag. 2012;2(2):116-47. doi: 10.1108/20426741211260723.
  35. Tatham P, Spens K, Kovacs G. The humanitarian common logistic operating picture: A solution to the inter-agency coordination challenge. Disasters. 2017;41(1):77-100. doi: 10.1111/disa.12193. [PubMed: 26987936].
  36. Maghfiroh MFN, Hanaoka S. Last mile distribution in humanitarian logistics under stochastic and dynamic consideration. 2017 IEEE International Conference on Industrial Engineering and Engineering Management (IEEM). 2017. p. 1411-5.
  37. Biswal AK, Jenamani M, Kumar SK. Warehouse efficiency improvement using RFID in a humanitarian supply chain: Implications for Indian food security system. Transport Res E Logist Transport Rev. 2018;109:205-24. doi: 10.1016/j.tre.2017.11.010.
  38. Jahre M, Pazirandeh A, Van Wassenhove LN. Defining logistics preparedness: A framework and research agenda. J Hum Logistics Supply Chain Manag. 2016;6(3):372-98. doi: 10.1108/jhlscm-04-2016-0012.
  39. Roh SY, Jang HM, Han CH. Warehouse location decision factors in humanitarian relief logistics. Asian J Ship Logist. 2013;29(1):103-20. doi: 10.1016/j.ajsl.2013.05.006.
  40. Boonmee C, Arimura M, Asada T. Facility location optimization model for emergency humanitarian logistics. Int J Disast Risk Reduc. 2017;24:485-98. doi: 10.1016/j.ijdrr.2017.01.017.
  41. Kovacs G, Glenn Richey R, Spens K. Identifying challenges in humanitarian logistics. Int J Phys Distrib Logist Manag. 2009;39(6):506-28. doi: 10.1108/09600030910985848.