Quercetin Increases Doxorubicin-Induced Apoptosis Through Oxidative DNA Damage in KATO III Gastric Cancer Cells

IRCMJ logo

Keywords

Apoptosis
Doxorubicin
Oxidative DNA damage
Quercetin
ROS

How to Cite

ChenM., DuanC., & PanJ. (2021). Quercetin Increases Doxorubicin-Induced Apoptosis Through Oxidative DNA Damage in KATO III Gastric Cancer Cells. Iranian Red Crescent Medical Journal, 23(4). https://doi.org/10.32592/ircmj.2021.23.4.350

Abstract

Background: Gastric cancer is the most common gastrointestinal malignancy with an increasing incidence rate worldwide. Finding novel curative and preventive approaches that could target the tumor cells without affecting the normal cells and overcome drug resistance will be tremendously useful.

Objectives: This study aimed to evaluate the effects of quercetin (QUE) in combination with doxorubicin (DOX) on apoptosis and its underlying mechanisms in the KATO III gastric cancer cell line.

Methods: The effects of Que and DOX on cell viability were measured using an MTT assay. Western blot was used for the measurement of γH2AX protein expression. The expression levels of 8-Hydroxy-2'-deoxyguanosine were evaluated by enzyme-linked immunosorbent assay. The DCFH-DA fluorescence dye was used to detect the formation of reactive oxygen species (ROS). The activities of antioxidant enzymes (superoxide dismutase, catalase, glutathione peroxidase, glutathione reductase, and glutathione S-transferase) were also assessed. For evaluation of apoptosis, the terminal deoxynucleotidyl transferase dUTP nick end labeling assay was used.

Results: Based on the findings, QUE significantly increased the cytotoxic effects of DOX. Besides, QUE considerably increased the expression levels of γH2AX. Upon QUE treatment, ROS levels increased, and antioxidant enzyme expression levels markedly decreased. Moreover, QUE treatment resulted in the potentiation of doxorubicin-induced apoptosis in KATO III cells, compared to the cells treated with either QUE or DOX.

Conclusion: Overall, co-administration of QUE and DOX enhances cytotoxicity, increases ROS levels, induces oxidative DNA damage, and decreases cellular antioxidant defense, and thereby might promise a therapeutic regimen in promoting the clinical efficacy of the treatment of patients with gastric cancer.

https://doi.org/10.32592/ircmj.2021.23.4.350

References

  1. Thrift AP, El-Serag HB. Burden of gastric cancer. Clin Gastroenterol Hepatol. 2020;18(3):534-42. doi: 10.1016/j.cgh.2019.07.045. [PubMed: 31362118].
  2. Lochhead P, El-Omar EM. Molecular predictors of gastric neoplastic progression. Cancer Cell. 2018;33(1):9-11. doi: 10.1016/j.ccell.2017.12.006. [PubMed: 29316435].
  3. Smyth EC, Nilsson M, Grabsch HI, van Grieken NC, Lordick F. Gastric cancer. Lancet. 2020;396(10251):635-48. doi: 10.1016/S0140-6736(20)31288-5. [PubMed: 32861308].
  4. Lin JX, Yoon C, Li P, Ryeom SW, Cho SJ, Zheng CH, et al. CDK5RAP3 as tumour suppressor negatively regulates self-renewal and invasion and is regulated by ERK1/2 signalling in human gastric cancer. Br J Cancer. 2020;123(7):1131-44. doi: 10.1038/s41416-020-0963-y. [PubMed: 32606358].
  5. Zhang L, Lu J, Jin Y, Qiu L. Folate-conjugated beta-cyclodextrin-based polymeric micelles with enhanced doxorubicin antitumor efficacy. Colloids Surf B Biointerfaces. 2014;122:260-9. doi: 10.1016/j.colsurfb.2014.07.005. [PubMed: 25058857].
  6. Wang B, Yu XC, Xu SF, Xu M. Paclitaxel and etoposide co-loaded polymeric nanoparticles for the effective combination therapy against human osteosarcoma. J Nanobiotechnology. 2015;13:22. doi: 10.1186/s12951-015-0086-4. [PubMed: 25880868].
  7. Qi W, Boliang W, Xiaoxi T, Guoqiang F, Jianbo X, Gang W. Cardamonin protects against doxorubicin-induced cardiotoxicity in mice by restraining oxidative stress and inflammation associated with Nrf2 signaling. Biomed Pharmacother. 2020;122:109547. doi: 10.1016/j.biopha.2019.109547. [PubMed: 31918264].
  8. Darband SG, Kaviani M, Yousefi B, Sadighparvar S, Pakdel FG, Attari JA, et al. Quercetin: a functional dietary flavonoid with potential chemo‐preventive properties in colorectal cancer. J Cell Physiol. 2018;233(9):6544-60. doi: 10.1002/jcp.26595. [PubMed: 29663361].
  9. Hafez HM, Hassanein H. Montelukast ameliorates doxorubicin-induced cardiotoxicity via modulation of p-glycoprotein and inhibition of ROS-mediated TNF-α/NF-κB pathways. Drug Chem Toxicol. 2020;27:1-12. doi: 10.1080/01480545.2020.1730885. [PubMed: 32106718].
  10. Srinivas US, Tan BW, Vellayappan BA, Jeyasekharan AD. ROS and the DNA damage response in cancer. Redox Biol. 2019;25:101084. doi: 10.1016/j.redox.2018.101084. [PubMed: 30612957].
  11. Dong Q, Chen L, Lu Q, Sharma S, Li L, Morimoto S, et al. Quercetin attenuates doxorubicin cardiotoxicity by modulating B mi‐1 expression. Br J Pharmacol. 2014;171(19):4440-54. doi: 10.1111/bph.12795.
  12. Henidi HA, Al-Abbasi FA, El-Moselhy MA, El-Bassossy HM, Al-Abd AM. Despite blocking doxorubicin-induced vascular damage, quercetin ameliorates its antibreast cancer activity. Oxid Med Cell Longev. 2020;2020:8157640. doi: 10.1155/2020/8157640. [PubMed: 33728016].
  13. Sharma A, Parikh M, Shah H, Gandhi T. Modulation of Nrf2 by quercetin in doxorubicin-treated rats. Heliyon. 2020;6(4):e03803. doi: 10.1016/j.heliyon.2020.e03803. [PubMed: 32337383].
  14. Zhang Q, Zhao XH, Wang ZJ. Flavones and flavonols exert cytotoxic effects on a human oesophageal adenocarcinoma cell line (OE33) by causing G2/M arrest and inducing apoptosis. Food Chem Toxicol. 2008;46(6):2042-53. doi: 10.1016/j.fct.2008.01.049. [PubMed: 18331776].
  15. Srivastava S, Somasagara RR, Hegde M, Nishana M, Tadi SK, Srivastava M, et al. Quercetin, a natural flavonoid interacts with DNA, arrests cell cycle and causes tumor regression by activating mitochondrial pathway of apoptosis. Sci Rep. 2016;6:24049. doi: 10.1038/srep24049. [PubMed: 27068577].
  16. Singh CK, Chhabra G, Ndiaye MA, Siddiqui IA, Panackal JE, Mintie CA, et al. Quercetin–resveratrol combination for prostate cancer management in TRAMP mice. Cancers. 2020;12(8):2141. doi: 10.3390/cancers12082141. [PubMed: 32748838].
  17. Wang G, Zhang J, Liu L, Sharma S, Dong Q. Quercetin potentiates doxorubicin mediated antitumor effects against liver cancer through p53/Bcl-xl. PloS One. 2012;7(12):e51764. doi: 10.1371/journal.pone.0051764. [PubMed: 23240061].
  18. Nessa MU, Beale P, Chan C, Yu JQ, Huq F. Synergism from combinations of cisplatin and oxaliplatin with quercetin and thymoquinone in human ovarian tumour models. Anticancer Res. 2011;31(11):3789-97. [PubMed: 22110201].
  19. Lan H, Hong W, Fan P, Qian D, Zhu J, Bai B. Quercetin inhibits cell migration and invasion in human osteosarcoma cells. Cell Physiol Biochem. 2017;43(2):553-67. doi: 10.1159/000480528. [PubMed: 28965117].
  20. Srivastava S, Somasagara RR, Hegde M, Nishana M, Tadi SK, Srivastava M, et al. Quercetin, a natural flavonoid interacts with DNA, arrests cell cycle and causes tumor regression by activating mitochondrial pathway of apoptosis. Sci Rep. 2016;6:24049. doi: 10.1038/srep24049. [PubMed: 27068577].
  21. Staedler D, Idrizi E, Kenzaoui BH, Juillerat-Jeanneret L. Drug combinations with quercetin: doxorubicin plus quercetin in human breast cancer cells. Cancer Chemother Pharmacol. 2011;68(5):1161-72. doi: 10.1007/s00280-011-1596-x. [PubMed: 21400027].
  22. Hong HJ, Liu JC, Chen PY, Chen JJ, Chan P, Cheng TH. Tanshinone IIA prevents doxorubicin-induced cardiomyocyte apoptosis through Akt-dependent pathway. Int J Cardiol. 2012;157(2):174-9. doi: 10.1016/j.ijcard.2010.12.012. [PubMed: 21190747].
  23. Majidinia M, Bishayee A, Yousefi B. Polyphenols: major regulators of key components of DNA damage response in cancer. DNA Repair. 2019;82:102679. doi: 10.1016/j.dnarep.2019.102679. [PubMed: 31450085].
  24. Choi JA, Kim JY, Lee JY, Kang CM, Kwon HJ, Yoo YD, et al. Induction of cell cycle arrest and apoptosis in human breast cancer cells by quercetin. Int J Oncol. 2001;19(4):837-44. doi: 10.3892/ijo.19.4.837. [PubMed: 11562764].
  25. Mertens-Talcott SU, Percival SS. Ellagic acid and quercetin interact synergistically with resveratrol in the induction of apoptosis and cause transient cell cycle arrest in human leukemia cells. Cancer Lett. 2005;218(2):141-51. doi: 10.1016/j.canlet.2004.06.007. [PubMed: 15670891].
  26. Ock CY, Kim EH, Choi DJ, Lee HJ, Hahm KB, Chung MH. 8-Hydroxydeoxyguanosine: not mere biomarker for oxidative stress, but remedy for oxidative stress-implicated gastrointestinal diseases. World J Gastroenterol. 2012;18(4):302-8. doi: 10.3748/wjg.v18.i4.302. [PubMed: 22294836].
  27. Lin S, Li Y, Zamyatnin Jr AA, Werner J, Bazhin AV. Reactive oxygen species and colorectal cancer. J Cell Physiol. 2018;233(7):5119-32. doi: 10.1002/jcp.26356. [PubMed: 29215746].
  28. Huang T, Zhou F, Yuan X, Yang T, Liang X, Wang Y, et al. Reactive oxygen species are involved in the development of gastric cancer and gastric cancer-related depression through abl1-mediated inflammation signaling pathway. Oxid Med Cell Longev. 2019;2019:5813985. doi: 10.1155/2019/5813985. [PubMed: 31396300].
  29. Guo C, Li X, Wang R, Yu J, Ye M, Mao L, et al. Association between oxidative DNA damage and risk of colorectal cancer: sensitive determination of urinary 8-hydroxy-2′-deoxyguanosine by UPLC-MS/MS analysis. Sci Rep. 2016;6:32581. doi: 10.1038/srep32581. [PubMed: 27585556].
  30. Ramasamy T, Ruttala HB, Chitrapriya N, Poudal BK, Choi JY, Kim ST, et al. Engineering of cell microenvironment-responsive polypeptide nanovehicle co-encapsulating a synergistic combination of small molecules for effective chemotherapy in solid tumors. Acta Biomater. 2017;48:131-43. doi: 10.1016/j.actbio.2016.10.034. [PubMed: 27794477].
  31. Huelsenbeck SC, Schorr A, Roos WP, Huelsenbeck J, Henninger C, Kaina B, et al. Rac1 protein signaling is required for DNA damage response stimulated by topoisomerase II poisons. J Biol Chem. 2012;287(46):38590-9. doi: 10.1074/jbc.M112.377903. [PubMed: 23012366].
  32. Huang X, Kurose A, Tanaka T, Traganos F, Dai W, Darzynkiewicz Z. Activation of ATM and histone H2AX phosphorylation induced by mitoxantrone but not by topotecan is prevented by the antioxidant N-acetyl-L-cysteine. Cancer Biol Ther. 2006;5(8):959-64. doi: 10.4161/cbt.5.8.2878. [PubMed: 16760673].
  33. Ikeda M, Kurose A, Takatori E, Sugiyama T, Traganos F, Darzynkiewicz Z, et al. DNA damage detected with γH2AX in endometrioid adenocarcinoma cell lines. Int J Oncol. 2010;36(5):1081-8. doi: 10.3892/ijo_00000589. [PubMed: 20372780].
  34. Sznarkowska A, Kostecka A, Meller K, Bielawski KP. Inhibition of cancer antioxidant defense by natural compounds. Oncotarget. 2017;8(9):15996-6016. doi: 10.18632/oncotarget.13723. [PubMed: 27911871].
  35. Di Bella G, Mascia F, Gualano L, Di Bella L. Melatonin anticancer effects. Int J Mol Sci. 2013;14(2):2410-30. doi: 10.3390/ijms14022410. [PubMed: 23348932].
  36. Kuhar M, Imran S, Singh N. Curcumin and quercetin combined with cisplatin to induce apoptosis in human laryngeal carcinoma Hep-2 cells through the mitochondrial pathway. J Cancer Mol. 2007;3(4):121-8. doi: 10.29685/JCM.200708.0004.
  37. Luceri C, Caderni G, Sanna A, Dolara P. Red wine and black tea polyphenols modulate the expression of cycloxygenase-2, inducible nitric oxide synthase and glutathione-related enzymes in azoxymethane-induced f344 rat colon tumors. J Nutr. 2002;132(6):1376-9. doi: 10.1093/jn/132.6.1376. [PubMed: 12042461].