A Comparison between Neuromuscular Effects of Parathion and Paraoxon on Chick Biventer Cervicis Nerve-Muscle and the Reversal of their Effects by Pralidoxime

IRCMJ logo
PDF
HTML

Keywords

Chick biventer cervicis nerve-muscle
Organophosphate
Paraoxon
Parathion
Pralidoxime

How to Cite

PoorheidariG., ShahriaryA., & Mashhadi Akbar BoojarM. (2021). A Comparison between Neuromuscular Effects of Parathion and Paraoxon on Chick Biventer Cervicis Nerve-Muscle and the Reversal of their Effects by Pralidoxime . Iranian Red Crescent Medical Journal, 23(2). https://doi.org/10.32592/ircmj.2021.23.2.28

Abstract

Background: It is generally believed that the anticholinesterase effect is induced by the organophosphate insecticide parathion only through its bioactive metabolite (i.e., paraoxon) that is created in the liver.

Objectives: This study aimed to evaluate the intrinsic anticholinesterase effect of parathion, compared to its main metabolite.

Methods: This study has been conducted to prepare the isolated chick biventer cervicis nerve-muscle using the twitch tension recording method.

Results: According to the results, paraoxon (0.1 µM) induced a highly significant increase (more than 100%) in the twitch height, while higher concentrations (0.3 and 1 µM) induced partial or total contractures. Furthermore, parathion induced almost the same percentage of increase in the twitch height at 1 µM and partial or total contractures at 3 and 10 µM. It should be noted that pralidoxime (2-PAM), at 300 µM, reversed the effects of paraoxon and its parent (i.e., parathion).

Conclusion: These results demonstrate that both parathion and its metabolite inhibit the acetylcholinesterase enzyme which can be reactivated by pralidoxime, whereas parathion is about 10 times less potent, compared to its metabolite. Therefore, the intrinsic toxic effects of parathion, regardless of its metabolite, should be considered in future studies.

 

https://doi.org/10.32592/ircmj.2021.23.2.28
PDF
HTML

References

  1. Vucinic S, Antonijevic B, Tsatsakis AM, Vassilopoulou L, Docea AO, et al. Environmental exposure to organophosphorus nerve agents. Environ Toxicol Pharmacol. 2017;56:163-71. doi: 10.1016/j.etap.2017.09.004. [PubMed: 28942081].
  2. Worek F, Wille T, Koller M, Thiermann H. Toxicology of organophosphorus compounds in view of an increasing terrorist threat. Arch Toxicol. 2016;90(9):2131-45. doi: 10.1007/s00204-016-1772-1. [PubMed: 27349770].
  3. Foroutan A. Medical review of Iraqi chemical warfare. Tehran, Iran: Baqiyatallah University of Medical Science; 2002.
  4. Foroutan A. A perspective on the medical history of the sacred defense. Tehran, Iran: Sooremehr Publication; 2007.
  5. Ai P, Kaiyuan Z, Xinhua L, Changbin L, Buckley NA, Roberts DM. Extracorporeal blood purification for organophosphorus pesticide poisoning. Cochrane Database Syst Rev. 2017;2017(8):CD006253. doi: 10.1002/14651858.CD006253.pub2. [PubMed: 6483700].
  6. Jintana S, Sming K, Krongtong Y, Thanyachai S. Cholinesterase activity, pesticide exposure and health impact in a population exposed to organophosphates. Int Arch Occup Environ Health. 2009;82(7):833-42. doi: 10.1007/s00420-009-0422-9. [PubMed: 19424713].
  7. Gupta RC. Classification and uses of organophosphates and carbamates. Toxicology of organophosphate & carbamate compounds. Massachusetts: Academic Press; 2006. P. 5-24. doi: 10.1016/B978-012088523-7/50003-X.
  8. Pereira EF, Aracava Y, DeTolla LJ, Beecham EJ, Basinger GW, Wakayama EJ, et al. Animal models that best reproduce the clinical manifestations of human intoxication with organophosphorus compounds. J Pharmacol Exp Ther. 2014;350(2):313-21. doi: 10.1124/jpet.114.214932. [PubMed: 24907067].
  9. Carr RL, Dail MB, Chambers HW, Chambers JE. Species differences in paraoxonase mediated hydrolysis of several organophosphorus insecticide metabolites. J Toxicol. 2015;2015:470189. doi: 10.1155/2015/470189. [PubMed: 25784934].
  10. Abdollahi M, Karami-Mohajeri S. A comprehensive review on experimental and clinical findings in intermediate syndrome caused by organophosphate poisoning. Toxicol Appl Pharmacol. 2012;258(3):309-14. doi: 10.1016/j.taap.2011.11.014. [PubMed: 22177963].
  11. Mutch E, Williams FM. Diazinon, chlorpyrifos and parathion are metabolised by multiple cytochromes P450 in human liver. Toxicology. 2006;224(1-2):22-32. doi: 10.1016/j.tox.2006.04.024. [PubMed: 16757081].
  12. Mutch E, Daly AK, Leathart JB, Blain PG, Williams FM. Do multiple cytochrome P450 isoforms contribute to parathion metabolism in man? Arch Toxicol. 2003;77(6):313-20. doi: 10.1007/s00204-003-0452-0. [PubMed: 12669189].
  13. Rahimi A, Nazemiyeh H, Azarmi Y. Effect of Salvia sahendica extracts on neuromuscular transmission in chick biventer cervicis muscle. Pharm Sci. 2015;21(4):199-204. doi: 10.15171/PS.2015.37.
  14. Werner AC, Ferraz MC, Yoshida EH, Tribuiani N, Gautuz JA, Santana MN, et al. The facilitatory effect of Casearia sylvestris Sw.(guaçatonga) fractions on the contractile activity of mammalian and avian neuromuscular apparatus. Curr Pharm Biotechnol. 2015;16(5):468-81. [PubMed: 25751174].
  15. Khodaei N, Shahriary AR, Sahraei H, Noroozzadeh A, Saberi M, Pirzad G, et al. Evaluation of the changes in contractility of Chick biventer cervices nerve-muscle encountered with Paraoxon and Pralidoxime: Introduction of a non-enzymatic method. J Mil Med. 2004;6(1):1-6.
  16. Khodaei N, Shahriary AR, Sahraei H, Noroozzadeh A, Saberi M, Pirzad G, et al. Evaluation of the changes in contractility of Chick biventer cervices nerve-muscle encountered with Paraoxon and Pralidoxime: Introduction of a non-enzymatic method. J Mil Med. 2004;6(1):1-6.
  17. Muhammad G, Rashid I, Firyal S. Practical aspects of treatment of organophosphate and carbamate insecticide poisoning in animals. Matrix Sci Pharma. 2017;1(1):10-1.
  18. Singh S, Sharma N. Neurological syndromes following organophosphate poisoning. Neurol India. 2000;48(4):308-13. [PubMed: 11146591].
  19. Eddleston M, Chowdhury FR. Pharmacological treatment of organophosphorus insecticide poisoning: the old and the (possible) new. Br J Clin Pharmacol. 2016;81(3):462-70. doi: 10.1111/bcp.12784. [PubMed: 26366467].
  20. Luo C, Leader H, Radic Z, Maxwell DM, Taylor P, Doctor BP, et al. Two possible orientations of the HI-6 molecule in the reactivation of organophosphate-inhibited acetylcholinesterase. Biochem Pharmacol. 2003;66(3):387-92. doi: 10.1016/s0006-2952(03)00237-5. [PubMed: 12907237].
  21. Lallement G, Demoncheaux JP, Foquin A, Baubichon D, Galonnier M, Clarençon D, et al. Subchronic administration of pyridostigmine or huperzine to primates: compared efficacy against soman toxicity. Drug Chem Toxicol. 2002;25(3):309-20. doi: 10.1081/dct-120005893. [PubMed: 12173251].
  22. Cowan FM, Broomfield CA, Lenz DE, Shih TM. Protective action of the serine protease inhibitor N‐tosyl‐L‐lysine chloromethyl ketone (TLCK) against acute soman poisoning. J App Toxicol. 2001;21(4):293-6. doi: 10.1002/jat.757. [PubMed: 11481662].
  23. Eyer F, Meischner V, Kiderlen D, Thiermann H, Worek F, Haberkorn M, et al. Human parathion poisoning. A toxicokinetic analysis. Toxicol Rev. 2003;22(3):143-63. doi: 10.2165/00139709-200322030-00003. [PubMed: 15181664].
  24. Isbister GK, Mills K, Friberg LE, Hodge M, O'Connor E, Patel R, et al. Human methyl parathion poisoning. Clin Toxicol. 2007;45(8):956-60. doi: 10.1080/15563650701232745. [PubMed: 17852161].
  25. Soukup O, Tobin G, Kumar UK, Binder J, Proska J, Jun D, et al. Interaction of nerve agent antidotes with cholinergic systems. Curr Med Chem. 2010;17(16):1708-18. doi: 10.2174/092986710791111260. [PubMed: 20345348].
  26. Jafari M, Pourheidari G. The reactivation effect of pralidoxime in human blood on parathion and paraoxon–induced cholinesterase inhibition. DARU J Pharm Sci. 2006;14(1):37-43.
  27. Karalliedde L, Baker D and Marrs TC. Organophosphate-induced intermediate syndrome: aetiology and relationships with myopathy. Toxicol Rev. 2006;25(1):1-14. doi: 10.2165/00139709-200625010-00001. [PubMed: 16856766].