In Silico and Experimental Outcomes of the Expression of miR508-5p and miR-635 in Tumor Tissues of Patients with Breast Cancer


Breast cancer, Gene expression omnibus (GEO), In silico analysis, Microarray dataset, MicroRNA


How to Cite

Zeinali Sehrig, F. ., Zaefizadeh, M., Ahmadizadeh, C. ., Alivand, M. R., & Ghorbian, S. . (2023). In Silico and Experimental Outcomes of the Expression of miR508-5p and miR-635 in Tumor Tissues of Patients with Breast Cancer. Iranian Red Crescent Medical Journal, 25(8).


Background: Breast cancer (BC) is a malignant tumor that occurs in the epithelial tissue of the breast gland and has become the most common malignancy in women. Various studies have reported the effect of epigenetic changes, including DNA methylation and microRNAs, on breast carcinogenesis. microRNAs play an important role in the post-transcriptional regulation of genes and are important regulators of oncogenic pathways. Studying microRNAs in BC facilitates the development of targeted therapies and early detection of this cancer.

Objectives: This study aimed to evaluate the expression level of miR-508-5p and miR-635 in BC tumor tissues compared to healthy marginal tissues.

Methods: In silico analysis confirmed microarray datasets (GSE40525, GSE44124 and GSE45666) downloaded from the GEO database. The analysis was defined using the Affy packages in R software to screen remarkably dysregulated miRNAs attended by utilized to predict the potential biological processes and molecular pathways of miR-508-5p and miR-635. Experimental statistical significance of differences in miRNA relative expression results was analyzed by pair-wise fixed reallocation randomization test as a statistical model included in the REST (relative expression software tool).

Results: GEO microarray data set, similar to qPCR results, showed that miR-508-5p was downregulated in the sample group by a mean factor of 0.327 (S.E.M range is 0.031-2.000). Moreover, miR-635 was upregulated in the sample group by a mean factor of 2.361 (S.E.M range is 0.250-16.000).

Conclusion: miR-508-5p was downregulated, while miR-635 was upregulated in BC tissues. They may be proposed as diagnostic and therapeutic biomarkers for patients with BC.


Zare M, Bastami M, Solali S, Alivand MR. Aberrant miRNA promoter methylation and EMT‐involving miRNAs in breast cancer metastasis: diagnosis and therapeutic implications. J Cell Physiol. 2018;233(5):3729-44. doi: 10.1002/jcp.26116. [PubMed: 28771724].

Seif F, Vaseghi H, Ariana M, Ganji SM, Nazari M, Rad KK, et al. Overexpression of miR-490-5p/miR-490-3p Potentially Induces IL-17-Producing T Cells in Patients With Breast Cancer. Eur J Breast Health. 2022;18(2):141-7. doi: 10.4274/ejbh.galenos.2022.2021-10-4. [PubMed: 35445179].

Vahdanikia V, Maleki M, Fam RA, Abdi A. Assessment the effect of human umbilical cord wharton's jelly stem cells on the expression of homing genes; CXCR4 and VLA-4 in cell line of Breast Cancer. Int J Hematol Oncol Stem Cell Res. 2022;

(2):110-16. doi: 10.18502/ijhoscr.v16i2.9204. [PubMed: 36304731].

Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. Ca Cancer J Clin. 2018;68(6):394-424. doi: 10.3322/caac.21492. [PubMed: 30207593].

Wong KK. DNMT1: A key drug target in triple-negative breast cancer. Semin Cancer Biol. 2021;72:198-213. doi: 10.1016/

j.semcancer.2020.05.010. [PubMed: 32461152].

Safi A, Bastami M, Delghir S, Ilkhani K, Seif F, Alivand MR. miRNAs modulate the dichotomy of cisplatin resistance or sensitivity in breast cancer: an update of therapeutic implications. Anticancer Agents Med Chem. 2021;21(9):1069-81. doi: 10.2174/18715

[PubMed: 32885760].

Mayahi S, Neshasteh-Riz A, Pornour M, Eynali S, Montazerabadi A. Investigation of combined photodynamic and radiotherapy effects of gallium phthalocyanine chloride on MCF-7 breast cancer cells. J Biol Inorg Chem. 2020;25(1):39-48. doi: 10.1007/s00775-019-01730-w. [PubMed: 31650249].

Idrissou M, Sanchez A, Penault-Llorca F, Bignon YJ, Bernard-Gallon D. Epi-drugs as triple-negative breast cancer treatment. Epigenomics. 2020;12(8):725-42. doi: 10.2217/epi-2019-0312. [PubMed: 32396394].

Guo P, Chen W, Li H, Li M, Li L. The histone acetylation modifications of breast cancer and their therapeutic implications. Pathol Oncol Res. 2018;24(4):807-13. doi: 10.1007/s12253-018-0433-5. [PubMed: 29948617].

Volovat SR, Volovat C, Hordila I, Hordila DA, Mirestean CC, Miron OT, et al. MiRNA and LncRNA as potential biomarkers in triple-negative breast cancer: a review. Front Oncol. 2020;10:526850. doi: 10.3389/fonc.2020.526850. [PubMed: 33330019].

Soheilifar MH, Vaseghi H, Seif F, Ariana M, Ghorbanifar S, Habibi N, et al. Concomitant overexpression of mir‐182‐5p and mir‐182‐3p raises the possibility of IL‐17–producing Treg formation in breast cancer by targeting CD3d, ITK, FOXO1, and NFATs: A meta‐analysis and experimental study. Cancer Sci. 2021;112(2):589-603. doi: 10.1111/cas.14764. [PubMed: 33283362].

Esteller M. Non-coding RNAs in human disease. Nat Rev Genet. 2011;12(12):861-74. doi: 10.1038/nrg3074. [PubMed: 22094949].

Abdi A, Zafarpiran M, Farsani ZS. The computational analysis conducted on miRNA target sites in association with SNPs at 3’UTR of ADHD-implicated genes. Cent Nerv Syst Agents Med Chem. 2020;20(1):58-75. doi: 10.2174/1871524919666191014104843. [PubMed: 31660846].

Wang B, Li J, Sun M, Sun L, Zhang X. miRNA expression in breast cancer varies with lymph node metastasis and other clinicopathologic features. IUBMB Life. 2014;66(5):371-7. doi: 10.1002/iub.1273. [PubMed: 24846313].

Breunig C, Pahl J, Küblbeck M, Miller M, Antonelli D, Erdem N, et al. MicroRNA-519a-3p mediates apoptosis resistance in breast cancer cells and their escape from recognition by natural killer cells. Cell Death Dis. 2017;8(8):e2973. doi: 10.1038/cddis.2017.364. [PubMed: 28771222].

Xie F, Hosany S, Zhong S, Jiang Y, Zhang F, Lin L, et al. MicroRNA-193a inhibits breast cancer proliferation and metastasis by downregulating WT1. PloS One. 2017;12(10):

e0185565. doi: 10.1371/journal.pone.0185565. [PubMed: 29016617].

Samaeekia R, Adorno-Cruz V, Bockhorn J, Chang YF, Huang S, Prat A, et al. miR-206 inhibits stemness and metastasis of breast cancer by targeting MKL1/IL11 pathway. Clin Cancer Res. 2017;23(4):1091-103. doi: 10.1158/1078-0432.CCR-16-0943. [PubMed: 27435395].

Fridrichova I, Zmetakova I. MicroRNAs contribute to breast cancer invasiveness. Cells. 2019;8(11):1361. doi: 10.3390/cells

[PubMed: 31683635].

Li C, Wang A, Chen Y, Liu Y, Zhang H, Zhou J. MicroRNA‑299‑5p inhibits cell metastasis in breast cancer by directly targeting serine/threonine kinase 39. Oncol Rep. 2020;43(4):1221-33. doi: 10.3892/or.2020.7486. [PubMed: 32020227].

Zhang Y, Sun Z, Zhang Y, Fu T, Liu C, Liu Y, et al. The microRNA-635 suppresses tumorigenesis in non-small cell lung cancer. Biomed Pharmacother. 2016;84:1274-81. doi: 10.1016/j.

biopha.2016.10.040. [PubMed: 27810784].

Han P, Chang CP. Long non-coding RNA and chromatin remodeling. RNA Biol. 2015;12(10):1094-8. doi: 10.1080/

2015.1063770. [PubMed: 26177256].

Bhatti GK, Khullar N, Sidhu IS, Navik US, Reddy AP, Reddy PH, et al. Emerging role of non‐coding RNA in health and disease. Metab Brain Dis. 2021;36(6):1119-34. doi: 10.1007/s11011-021-00739-y. [PubMed: 33881724].

Heydarzadeh S, Ranjbar M, Karimi F, Seif F, Alivand MR. Overview of host miRNA properties and their association with epigenetics, long non-coding RNAs, and Xeno-infectious factors. Cell Biosci. 2021;11(1):1-17. doi: 10.1186/s13578-021-00552-1. [PubMed: 33632341].

Ilkhani K, Delgir S, Safi A, Seif F, Samei A, Bastami M, et al. Clinical and in silico outcomes of the expression of miR-130a-5p and miR-615-3p in tumor compared with non-tumor adjacent tissues of patients with BC. Anticancer Agents Med Chem. 2021;21(7):927-35. doi: 10.2174/1871520620666200924105352. [PubMed: 32972352].

Gasparri ML, Casorelli A, Bardhi E, Besharat AR, Savone D, Ruscito I, et al. Beyond circulating microRNA biomarkers: Urinary microRNAs in ovarian and breast cancer. Tumor biology. 2017;39(5):1-13. doi: 10.1177/1010428317695525. [PubMed: 28459207].

Zografos E, Zagouri F, Kalapanida D, Zakopoulou R, Kyriazoglou A, Apostolidou K, et al. Prognostic role of micro-RNAs in breast cancer: A systematic review. Oncotarget. 2019;10(67):7156-78. doi: 10.18632/oncotarget.27327. [PubMed: 31903173].

Zhang L-F, Jiang S, Liu MF. MicroRNA regulation and analytical methods in cancer cell metabolism. Cell Mol Life Sci. 2017;74(16):2929-41. doi: 10.1007/s00018-017-2508-y. [PubMed: 28321489].

Zhan M-N, Yu XT, Tang J, Zhou CX, Wang CL, Yin QQ, et al. MicroRNA-494 inhibits breast cancer progression by directly targeting PAK1. Cell Death Dis. 2018;8(1):e2529. doi: 10.1038/cddis.2016.440. [PubMed: 28055013].

Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021;71(3):209-49. doi: 10.3322/caac.21660. [PubMed: 33538338].

Zhou M, Zhang P, Zhao Y, Liu R, Zhang Y. Overexpressed circRANBP17 acts as an oncogene to facilitate nasopharyngeal carcinoma via the miR-635/RUNX2 axis. J Cancer. 2021;12(14):4322-31. doi: 10.7150/jca.55794. [PubMed: 34093832].

Tian L, Guo Z, Wang H, Liu X. MicroRNA-635 inhibits the malignancy of osteosarcoma by inducing apoptosis. Mol Med Rep. 2017;16(4):4829-34. doi: 10.3892/mmr.2017.7127. [PubMed: 28765920].

Seif F, Khoshmirsafa M, Aazami H, Mohsenzadegan M, Sedighi G, Bahar M. The role of JAK-STAT signaling pathway and its regulators in the fate of T helper cells. Cell Commun Signal. 2017;15(1):1-13. doi: 10.1186/s12964-017-0177-y. [PubMed: 28637459].

Zhu F, Dai C, Fu Y, Loo JF, Xia D, Gao SP, et al. Physalin A exerts anti-tumor activity in non-small cell lung cancer cell lines by suppressing JAK/STAT3 signaling. Oncotarget. 2016;

(8):9462-76. doi: 10.18632/oncotarget.7051. [PubMed: 26843613].

Vainchenker W, Dusa A, Constantinescu SN. JAKs in pathology: role of Janus kinases in hematopoietic malignancies and immunodeficiencies. Semin Cell Dev Biol. doi: 10.1016/j.semcdb.2008.07.002. [PubMed: 18682296].

Cance WG, Liu ET. Protein kinases in human breast cancer. Breast Cancer Res Treat. 1995;35(1):105-14. doi: 10.1007/BF00694751. [PubMed: 7612897].

Seif F, Aazami H, Khoshmirsafa M, Kamali M, Mohsenzadegan M, Pornour M, et al. JAK inhibition as a new treatment strategy for patients with COVID-19. Int Arch Allergy Immunol. 2020;181(6):467-75. doi: 10.1159/000508247. [PubMed: 32392562].

Smith GA, Uchida K, Weiss A, Taunton J. Essential biphasic role for JAK3 catalytic activity in IL-2 receptor signaling. Nat Chem Biol. 2016;12(5):373-9. doi: 10.1038/nchembio.2056. [Pub

Med: 27018889].

Rodig SJ, Meraz MA, White JM, Lampe PA, Riley JK, Arthur CD, et al. Disruption of the Jak1 gene demonstrates obligatory and nonredundant roles of the Jaks in cytokine-induced biologic responses. Cell. 1998;93(3):373-83. doi: 10.1016/s0092-8674(00)81166-6. [PubMed: 9590172].

Buchert M, Burns C, Ernst M. Targeting JAK kinase in solid tumors: emerging opportunities and challenges. Oncogene. 2016;35(8):939-51. doi: 10.1038/onc.2015.150. [PubMed: 25982279].

Zhu D, Yu Y, Wang W, Wu K, Liu D, Yang Y, et al. Long noncoding RNA PART1 promotes progression of non‐small cell lung cancer cells via JAK‐STAT signaling pathway. Cancer Med. 2019;8(13):6064-81. doi: 10.1002/cam4.2494. [PubMed: 31436388].

Yuan J, Ji H, Xiao F, Lin Z, Zhao X, Wang Z, et al. MicroRNA-340 inhibits the proliferation and invasion of hepatocellular carcinoma cells by targeting JAK1. Biochem Biophys Res Commun. 2017;483(1):578-84. doi: 10.1016/j.bbrc.2016.

102. [PubMed: 27998770].

Chen B, Lai J, Dai D, Chen R, Li X, Liao N. JAK1 as a prognostic marker and its correlation with immune infiltrates in breast cancer. Aging. 2019;11(23):11124-35. doi: 10.18632/aging.

[PubMed: 31790361].

Balko JM, Schwarz LJ, Luo N, Estrada MV, Giltnane JM, Dávila-González D, et al. Triple-negative breast cancers with amplification of JAK2 at the 9p24 locus demonstrate JAK2-specific dependence. Sci Transl Med. 2016;8(334):334ra53. doi: 10.1126/scitranslmed.aad3001. [PubMed: 27075627].

Naeem MA, Shah TH, Zafar N, Khan M, Bhutto AA, Rabbani S. Detection of JAK2 gene mutation in Pakistani women with triple-negative breast cancer. Breast J. 2019;26(4):829-30. doi: 10.1111/tbj.13609. [PubMed: 31513718].

Jeong EG, Kim MS, Nam HK, Min CK, Lee S, Chung YJ, et al. Somatic mutations of JAK1 and JAK3 in acute leukemias and solid cancers. Clin Cancer Res. 2008;14(12):3716-21. doi: 10.1158/1078-0432.CCR-07-4839. [PubMed: 18559588].

Zhang Q, Sturgill JL, Kmieciak M, Szczepanek K, Derecka M, Koebel C, et al. The role of Tyk2 in regulation of breast cancer growth. J Interferon Cytokine Res. 2011;31(9):671-7. doi: 10.1089/jir.2011.0023. [PubMed: 21864028].

Sang QX, Man YG, Sung YM, Khamis ZI, Zhang L, Lee MH, et al. Non-receptor tyrosine kinase 2 reaches its lowest expression levels in human breast cancer during regional nodal metastasis. Clin Exp Metastasis. 2012;29(2):143-53. doi: 10.1007/s10585-011-9437-1. [PubMed: 22116632].

Furumoto Y, Gadina M. The arrival of JAK inhibitors: advancing the treatment of immune and hematologic disorders. BioDrugs. 2013;27(5):431-8. doi: 10.1007/s40259-013-0040-7. [Pub

Med: 23743669].

Harrington R, Al Nokhatha SA, Conway R. JAK inhibitors in rheumatoid arthritis: an evidence-based review on the emerging clinical data. J Inflamm Res. 2020;13:519-31. doi: 10.2147/JIR.S219586. [PubMed: 32982367].

Pesu M, Laurence A, Kishore N, Zwillich SH, Chan G, O'Shea JJ. Therapeutic targeting of Janus kinases. Immunol Rev. 2008;223(1):132-42. doi: 10.1111/j.1600-065X.2008.00644.x. [PubMed: 18613833].

Liu Y, Li B, Meng F, Qiu L. MiR-508-5p is a prognostic marker and inhibits cell proliferation and migration in glioma. Eur Rev Med Pharmacol Sci. 2017;21(1):76-81. [PubMed: 28121353].

Duan X, Bai J, Wei J, Li Z, Liu X, Xu G. MicroRNA-508-5p suppresses metastasis in human gastric cancer by targeting S-phase kinase‑associated protein 2. Mol Med Rep. 2017;16(2):2163-71. doi: 10.3892/mmr.2017.6793. [PubMed: 28627698].

Lonjedo M, Poch E, Mocholí E, Hernández-Sánchez M, Ivorra C, Franke TF, et al. The Rho family member RhoE interacts with Skp2 and is degraded at the proteasome during cell cycle progression. J Biol Chem. 2013;288(43):30872-82. doi: 10.1074/jbc.M113.511105.

Zhang B, Ji LH, Liu W, Zhao G, Wu ZY. Skp2-RNAi suppresses proliferation and migration of gallbladder carcinoma cells by enhancing p27 expression. World J Gastroenterol. 2013;19

(30):4917-24. doi: 10.3748/wjg.v19.i30.4917. [PubMed: 23946596].

Wang Z, Gao D, Fukushima H, Inuzuka H, Liu P, Wan L, et al. Skp2: a novel potential therapeutic target for prostate cancer. Biochim Biophys Acta. 2012;1825(1):11-7. doi: 10.1016/j.

bbcan.2011.09.002. [PubMed: 21963805].

Wang Z, Wang J, Yang Y, Hao B, Wang R, Li Y, et al. Loss of has-miR-337-3p expression is associated with lymph node metastasis of human gastric cancer. J Exp Clin Cancer Res. 2013;32(1):1-9. doi: 10.1186/1756-9966-32-76. [PubMed: 24422944].

Shang Y, Zhang Z, Liu Z, Feng B, Ren G, Li K, et al. miR-508-5p regulates multidrug resistance of gastric cancer by targeting ABCB1 and ZNRD1. Oncogene. 2014;33(25):3267-76. doi: 10.1038/onc.2013.297. [PubMed: 23893241].

Shang Y, Feng B, Zhou L, Ren G, Zhang Z, Fan X, et al. The miR27b-CCNG1-P53-miR-508-5p axis regulates multidrug resistance of gastric cancer. Oncotarget. 2016;7(1):538-49. doi: 10.18632/oncotarget.6374. [PubMed: 26623719].

Hermeking H. MicroRNAs in the p53 network: micromanagement of tumour suppression. Nat Rev Cancer. 2012;12(9):613-26. doi: 10.1038/nrc3318. [PubMed: 22


Wu S, Huang Y, Bao B, Wu L, Dong J, Liu X, et al. miR-508-5p acts as an anti-oncogene by targeting MESDC1 in hepatocellular carcinoma. Neoplasma. 2017;64(1):40-7. doi: 10.4149/neo_2017_105. [PubMed: 27881003].

Chen Y, Zhao YH, Kalaslavadi TB, Hamati E, Nehrke K, Le AD, et al. Genome-wide search and identification of a novel gel-forming mucin MUC19/Muc19 in glandular tissues. Am J Respir Cell Mol Biol. 2004;30(2):155-65. doi: 10.1165/rcmb.2003-0103OC. [PubMed: 12882755].

Yu D, Chen Y, Han J, Zhang H, Chen X, Zou W, et al. MUC19 expression in human ocular surface and lacrimal gland and its alteration in Sjögren syndrome patients. Exp Eye Res. 2008;86(2):403-11. doi: 10.1016/j.exer.2007.11.013. [Pub

Med: 18184611].

Qiao K, Ning S, Wan L, Wu H, Wang Q, Zhang X, et al. Correction to: LINC00673 is activated by YY1 and promotes the proliferation of breast cancer cells via the miR-515-5p/MARK4/Hippo signaling pathway. J Exp Clin Cancer Res. 2020;39(1):1-5. doi: 10.1186/s13046-019-1421-7.

Liu Y, Zhang Q, Wu J, Zhang H, Li X, Zheng Z, et al. Long non-coding RNA A2M-AS1 promotes breast cancer progression by sponging microRNA-146b to upregulate MUC19. Int J Gen Med. 2020;13:1305-16. doi: 10.2147/IJGM.S278564. [PubMed: 33273850].