Serum Correlation of Nesfatin-1 with Angiographic, Echocardiographic, and Biochemical Findings in Patients with Coronary Artery Disease


Coronary artery diseases
Epicardial fat thickness

How to Cite

Nejati, A. ., Doustkami, H. ., Babapour, B. ., Ebrahimoghlou, V., & Aslani, M. R. (2021). Serum Correlation of Nesfatin-1 with Angiographic, Echocardiographic, and Biochemical Findings in Patients with Coronary Artery Disease. Iranian Red Crescent Medical Journal, 23(3).


Background: Nesfatin, as an adipokine, has been shown to have a number of metabolic effects associated with a variety of inflammatory diseases. The current study aimed at investigating the relationship of nesfatin-1 levels with biochemical, echocardiographic, and angiographic findings, especially with the epicardial fat thickness (EFT) in patients with coronary artery disease.

Methods: This cross-sectional study was conducted on 90 patients who were candidates for angiography. The patients were then divided into one control group (with normal angiography but a history of chest pain; n=30), as well as stable-AP (with a diagnosis of stable angina pectoris; n=30) and acute-MI groups (with a diagnosis of acute myocardial infarction; n=30). Demographic, biochemical, angiographic, and echocardiographic parameters of all subjects were evaluated in this study.

Results: Serum levels of nesfatin-1 in acute-MI and stable-AP groups were significantly reduced, compared to the healthy subjects (P<0.001 and P<0.01, respectively); however, there was no significant difference between acute-MI and stable-AP groups. In addition, the findings demonstrated a negative relationship of nesfatin-1 with low-density lipoprotein, Gensini score, white blood cell, troponin T, EFT, and creatine kinase-MB (CK-MB). However, there was a positive association between nesfatin-1 and left ventricle ejection fraction (%).

Conclusion: Decreased levels of nesfatin-1 in acute-MI and stable-AP groups as well as its association with several parameters, such as EFT, CK-MB, and Gensini score, may indicate the potential role of nesfatin-1 in the process of atherosclerosis, which requires further studies.


  1. Sanchis-Gomar F, Perez-Quilis C, Leischik R, Lucia A. Epidemiology of coronary heart disease and acute coronary syndrome. Ann Transl Med. 2016;4(13):256. doi: 10.21037/atm.2016.06.33. [PubMed: 27500157].
  2. Veeranna V, Pradhan J, Niraj A, Fakhry H, Afonso L. Traditional cardiovascular risk factors and severity of angiographic coronary artery disease in the elderly. Prev Cardiol. 2010;13(3):135-40. doi: 10.1111/j.1751-7141.2009.00062.x. [PubMed: 20626669].
  3. Legein B, Temmerman L, Biessen EA, Lutgens E. Inflammation and immune system interactions in atherosclerosis. Cell Mol Life Sci. 2013;70(20):3847-69. doi: 10.1007/s00018-013-1289-1. [PubMed: 23430000].
  4. Keyhanmanesh R, Alipour MR, Ebrahimi H, Aslani MR. Effects of diet-induced obesity on tracheal responsiveness to methacholine, tracheal visfatin level, and lung histological changes in ovalbumin-sensitized female Wistar rats. Inflammation. 2018;41(3):846-58. doi: 10.1007/s10753-018-0738-2. [PubMed: 29380115].
  5. Akhavanakbari G, Babapour B, Alipour MR, Keyhanmanesh R, Ahmadi M, Aslani MR. Effect of high fat diet on NF‐кB microRNA146a negative feedback loop in ovalbumin‐sensitized rats. BioFactors. 2019;45(1):75-84. doi: 10.1002/biof.1466. [PubMed: 30521085].
  6. Aslani MR, Ghazaei Z, Ghobadi H. Correlation of serum fatty acid binding protein-4 and interleukin-6 with airflow limitation and quality of life in stable and acute exacerbation of COPD. Turk J Med Sci. 2020;50(2):337-45. doi: 10.3906/sag-1909-9. [PubMed: 31905499].
  7. Kuyumcu MS, Kuyumcu A, Yayla Ç, Özbay MB, Ünal S, Açar B, et al. The relationship between nesfatin-1 levels and SYNTAX score in patients with non-ST segment elevation myocardial infarction. Acta Cardiol Sin. 2018;34(5):386-93. doi: 10.6515/ACS.201809_34(5).20180423A. [PubMed: 30271088].
  8. Oh S, Shimizu H, Satoh T, Okada S, Adachi S, Inoue K, et al. Identification of nesfatin-1 as a satiety molecule in the hypothalamus. Nature. 2006;443(7112):709-12. doi: 10.1038/nature05162. [PubMed: 17036007].
  9. Yamawaki H. Vascular effects of novel adipocytokines: focus on vascular contractility and inflammatory responses. Biol Pharm Bull. 2011;34(3):307-10. doi: 10.1248/bpb.34.307. [PubMed: 21372376].
  10. Shimizu H, Oh-i S, Hashimoto K, Nakata M, Yamamoto S, Yoshida N, et al. Peripheral administration of nesfatin-1 reduces food intake in mice: the leptin-independent mechanism. Endocrinology. 2009;150(2):662-71. doi: 10.1210/en.2008-0598. [PubMed: 19176321].
  11. Dai H, Li X, He T, Wang Y, Wang Z, Wang S, et al. Decreased plasma nesfatin-1 levels in patients with acute myocardial infarction. Peptides. 2013;46:167-71. doi: 10.1016/j.peptides.2013.06.006. [PubMed: 23806888].
  12. Li QC, Wang HY, Chen X, Guan HZ, Jiang ZY. Fasting plasma levels of nesfatin-1 in patients with type 1 and type 2 diabetes mellitus and the nutrient-related fluctuation of nesfatin-1 level in normal humans. Regul Pept. 2010;159(1-3):72-7. doi: 10.1016/j.regpep.2009.11.003. [PubMed: 19896982].
  13. Deniz R, Gurates B, Aydin S, Celik H, Sahin I, Baykus Y, et al. Nesfatin-1 and other hormone alterations in polycystic ovary syndrome. Endocrine. 2012;42(3):694-9. doi: 10.1007/s12020-012-9638-7. [PubMed: 22367584].
  14. Ari M, Ozturk OH, Bez Y, Oktar S, Erduran D. High plasma nesfatin-1 level in patients with major depressive disorder. Prog Neuropsychopharmacol Biol Psychiatry. 2011;35(2):497-500. doi: 10.1016/j.pnpbp.2010.12.004. [PubMed: 21163317].
  15. Aydin S, Dag E, Ozkan Y, Erman F, Dagli AF, Kilic N, et al. Nesfatin-1 and ghrelin levels in serum and saliva of epileptic patients: hormonal changes can have a major effect on seizure disorders. Mol Cell Biochem. 2009;328(1-2):49-56. doi: 10.1007/s11010-009-0073-x. [PubMed: 19262995].
  16. Feijóo-Bandín S, Rodríguez-Penas D, García-Rúa V, Mosquera-Leal A, González-Juanatey JR, Lago F. Nesfatin-1: a new energy-regulating peptide with pleiotropic functions. Implications at cardiovascular level. Endocrine. 2016;52(1):11-29. doi: 10.1007/s12020-015-0819-z. [PubMed: 26662184].
  17. Ibe S, Kishimoto Y, Niki H, Saita E, Umei T, Miura K, et al. Associations between plasma nesfatin-1 levels and the presence and severity of coronary artery disease. Heart Vessels. 2019;34(6):965-70. doi: 10.1007/s00380-018-01328-3. [PubMed: 30599062].
  18. Angelone T, Rocca C, Pasqua T. Nesfatin-1 in cardiovascular orchestration: From bench to bedside. Pharmacol Res. 2020;156:104766. doi: 10.1016/j.phrs.2020.104766. [PubMed: 32201244].
  19. Kuyumcu MS, Kuyumcu A, Yayla Ç, Özbay MB, Alagöz M, Ünal S, et al. Nesfatin-1 levels in patients with slow coronary flow. Kardiol Pol. 2018;76(2):401-5. doi: 10.5603/KP.a2017.0210. [PubMed: 29131290].
  20. Iacobellis G, Willens HJ. Echocardiographic epicardial fat: a review of research and clinical applications. J Am Soc Echocardiogr. 2009;22(12):1311-9. doi: 10.1016/j.echo.2009.10.013. [PubMed: 19944955].
  21. Iacobellis G, Bianco AC. Epicardial adipose tissue: emerging physiological, pathophysiological and clinical features. Trends Endocrinol Metab. 2011;22(11):450-7. doi: 10.1016/j.tem.2011.07.003. [PubMed: 21852149].
  22. Iozzo P. Myocardial, perivascular, and epicardial fat. Diabetes Care. 2011;34(Suppl 2):S371-9. doi: 10.2337/dc11-s250. [PubMed: 21525485].
  23. Sacks HS, Fain JN. Human epicardial adipose tissue: a review. Am Heart J. 2007;153(6):907-17. doi: 10.1016/j.ahj.2007.03.019. [PubMed: 17540190].
  24. Babapour B, Doustkami H, Avesta L, Moradi A, Saadat S, Piralaei K, et al. Correlation of serum adipolin with epicardial fat thickness and severity of coronary artery diseases in acute myocardial infarction and stable angina pectoris patients. Med Princ Pract. 2020;In Press. doi: 10.1159/000508834. [PubMed: 32438366].
  25. Sullivan DR, Marwick TH, Freedman SB. A new method of scoring coronary angiograms to reflect extent of coronary atherosclerosis and improve correlation with major risk factors. Am Heart J. 1990;119(6):1262-7. doi: 10.1016/s0002-8703(05)80173-5. [PubMed: 1972310].
  26. Aslani MR, Keyhanmanesh R, Khamaneh AM, Abbasi MM, Fallahi M, Alipour MR. Tracheal overexpression of IL-1β, IRAK-1 and TRAF-6 mRNA in obese-asthmatic male Wistar rats. Iran J Basic Med Sci. 2016;19(4):350-7. [PubMed: 27279977].
  27. Katus HA, Remppis A, Neumann FJ, Scheffold T, Diederich KW, Vinar G, et al. Diagnostic efficiency of troponin T measurements in acute myocardial infarction. Circulation. 1991;83(3):902-12. doi: 10.1161/01.cir.83.3.902. [PubMed: 1999039].
  28. Tasatargil A, Kuscu N, Dalaklioglu S, Adiguzel D, Celik-Ozenci C, Ozdem S, et al. Cardioprotective effect of nesfatin-1 against isoproterenol-induced myocardial infarction in rats: role of the Akt/GSK-3β pathway. Peptides. 2017;95:1-9. doi: 10.1016/j.peptides.2017.07.003. [PubMed: 28720397].
  29. Solmaz A, Bahadır E, Gülçiçek OB, Yiğitbaş H, Çelik A, Karagöz A, et al. Nesfatin-1 improves oxidative skin injury in normoglycemic or hyperglycemic rats. Peptides. 2016;78:1-10. doi: 10.1016/j.peptides.2015.12.006. [PubMed: 26829459].
  30. Ozturk C, Oktay S, Yuksel M, Akakin D, Yarat A, Kasimay Cakir O. Anti-inflammatory effects of nesfatin-1 in rats with acetic acid-induced colitis and underlying mechanisms. J Physiol Pharmacol. 2015;66(5):741-50. [PubMed: 26579580].
  31. Angelone T, Filice E, Pasqua T, Amodio N, Galluccio M, Montesanti G, et al. Nesfatin-1 as a novel cardiac peptide: identification, functional characterization, and protection against ischemia/reperfusion injury. Cell Mol Life Sci. 2013;70(3):495-509. doi: 10.1007/s00018-012-1138-7. [PubMed: 22955491].
  32. Chiari PC, Bienengraeber MW, Pagel PS, Krolikowski JG, Kersten JR, Warltier DC. Isoflurane protects against myocardial infarction during early reperfusion by activation of phosphatidylinositol-3-kinase signal transduction: evidence for anesthetic-induced postconditioning in rabbits. Anesthesiology. 2005;102(1):102-9. doi: 10.1097/00000542-200501000-00018. [PubMed: 15618793].
  33. Mazurek T, Zhang L, Zalewski A, Mannion JD, Diehl JT, Arafat H, et al. Human epicardial adipose tissue is a source of inflammatory mediators. Circulation. 2003;108(20):2460-6. doi: 10.1161/01.CIR.0000099542.57313.C5. [PubMed: 14581396].
  34. Baker AR, Silva NF, Quinn DW, Harte AL, Pagano D, Bonser RS, et al. Human epicardial adipose tissue expresses a pathogenic profile of adipocytokines in patients with cardiovascular disease. Cardiovasc Diabetol. 2006;5:1. doi: 10.1186/1475-2840-5-1. [PubMed: 16412224].
  35. Eroglu S, Sade LE, Yildirir A, Bal U, Ozbicer S, Ozgul AS, et al. Epicardial adipose tissue thickness by echocardiography is a marker for the presence and severity of coronary artery disease. Nutr Metab Cardiovasc Dis. 2009;19(3):211-7. doi: 10.1016/j.numecd.2008.05.002. [PubMed: 18718744].