Evaluation of the Genes and Molecular Pathways Involved in Skin Lesions in Patients with COVID-19: Systems Biology and Bioinformatics Analysis Approach

How to Cite

Babazadeh, M. ., Maddah, R. ., Delavari, S. ., Razmi, M. ., Jalili , A. ., Bahadorzadeh, M. ., & Rohaninasab, M. . (2023). Evaluation of the Genes and Molecular Pathways Involved in Skin Lesions in Patients with COVID-19: Systems Biology and Bioinformatics Analysis Approach. Iranian Red Crescent Medical Journal, 25(2). https://doi.org/10.32592/ircmj.2023.25.2.2204


Background: Coronavirus disease 2019 (COVID-19) was first identified in 2019 in Wuhan, China. Initially, although the number of COVID-19-infected individuals was very low, the infected cases increased as the virus spread worldwide. Skin manifestation is one of the symptoms observed in COVID-19 patients.

Objectives: This study investigated the critical genes and molecular pathways involved in skin manifestations in COVID-19 patients through a biological system approach.

Methods: In this study, the microarray dataset was downloaded from the Gene Expression Omnibus (GEO) database and analyzed for identifying differentially expressed genes (DEGs). The enrichment analysis of DEGs was evaluated using the DAVID database. Afterward, protein-protein interaction (PPI) networks were constructed via the STRING database and visualized using Cytoscape software. The hub genes were recognized using the cytoHubba. The interaction of the microRNA (miRNA)-hub genes, transcription factor (TF)-hub genes, and drug-hub genes was also evaluated in this study.

Results: After analysis, some genes with the highest degree of connectivity, which were involved in the pathogenesis of HELLP syndrome were identified, and they were known as hub genes. These genes are as follows: IFN-γ, CXCL1, CCL2, CCL3, TLR2, IL-1B, CXCL6, IL-6, CCL4, and CXCL2. has-mir-34a-5p, has-mir-20a-5p, and has-mir-27a-3p as miRNA, as well as RELA as TF had the most interaction with the hub genes.

Conclusion: Finally, IL-6 and CXCL10 that were compared to the other hub genes had the highest interaction with other genes; therefore, their role in Shamgir's pathogenesis is significant. Targeting the cited genes would be a strategy to prevent symptom manifestation and better patient management.



Polly S, Fernandez AP. Common skin signs of COVID-19 in adults: An update. Cleve Clin J Med. 2022;89(3):161-7. doi: 10.3949/ccjm.89a.21126. [PubMed: 35232829].

Hamidian Jahromi A, Mazloom S, Ballard D. What the European and American health care systems can learn from China COVID-19 epidemic; action planning using purpose designed medical telecommunication, courier services, home-based quarantine, and COVID-19 walk-in centers. Immunopathol Persa. 2020;6(2):e17. doi: 10.34172/ipp.2020.17.

Nokhostin F, Dargahi MalAmir M, Tutunchi S, Rezaeeyan H. Evaluation of prognostic/diagnostic value of Hematological markers in the detection of inflammation in coronavirus disease: a review study. J Adv Med Biomed Res. 2020;28(128):168-71.

Molaee H, Emadi SN, M´ Imunya JM, Davoudi‐Monfared E, Mohammed A, Razavi Z. Chilblain or perniosis-like skin lesions in children during the COVID-19 pandemic: A systematic review of articles. Dermatol Ther. 2022;35(3):e15298. doi: 10.1111/dth.15298. [PubMed: 34981615].

Cooper JA, vanDellen M, Bhutani S. Self-weighing practices and associated health behaviors during COVID-19. Am J Health Behav. 2021;45(1):17-30. doi: 10.5993/AJHB.45.1.2. [PubMed: 33402235].

Fan X, Feng X, Dong Y, Hou H. COVID-19 CT image recognition algorithm based on transformer and CNN. Displays. 2022;72:102150. doi: 10.1016/j.displa.2022.102150. [PubMed: 35095128].

Halil K, Selcuk O, Mahmoud A. Changes in symptoms and severity of obsessive compulsive disorder in children and adolescent patients following the covid-19 pandemic. Arc

Clin Psychiatr. 2021;48(2):83-89. doi: 10.15761/0101-60830000000285.

Zhang W, Liu N, Zhang J. Functional nucleic acids as modular components against SARS-CoV-2: From diagnosis to therapeutics. Biosens Bioelectron. 2022;201:113944. doi: 10.1016/j.bios.2021.113944. [PubMed: 35026546].

Weaver RH, Jackson A, Lanigan J, Power TG, Anderson A, Cox AE, et al. Health behaviors at the onset of the COVID-19 pandemic. Am J Health Behav. 2021;45(1):44-61. doi: 10.5993/AJHB.45.1.4. [PubMed: 33402237].

Saghafi N, Rezaee SA, Momtazi-Borojeni AA, Tavasolian F, Sathyapalan T, Abdollahi E, et al. The therapeutic potential of regulatory T cells in reducing cardiovascular complications in patients with severe COVID-19. Life Sci. 2022;294:120392. doi: 10.1016/j.lfs.2022.120392. [PubMed: 35149115].

Elahi R, Karami P, Heidary AH, Esmaeilzadeh A. An updated overview of recent advances, challenges, and clinical considerations of IL-6 signaling blockade in severe coronavirus disease 2019 (COVID-19). International immunopharmacology. 2022;105:108536. doi: 10.1016/j.intimp.2022.108536. [PubMed: 35074571].

Babino G, Argenziano G, Balato A. Impact in contact dermatitis during and after SARS-CoV2 pandemic. Curr Treat Options Allergy. 2022;9(1):19-26. doi: 10.1007/s40521-022-00298-2. [PubMed: 35194543].

Seque CA, Enokihara M, Porro AM, Tomimori J. Skin manifestations associated with COVID-19. An Bras Dermatol. 2022;97(1):75-88. doi: 10.1016/j.abd.2021.08.002. [PubMed: 34857407].

Akhavan S, Tutunchi S, Malmir A, Ajorlou P, Jalili A, Panahi G. Molecular study of the proliferation process of beta cells derived from pluripotent stem cells. Mol Biol Rep. 2022;49(2):1429-36. doi: 10.1007/s11033-021-06892-y. [PubMed: 34734370].

Saberian P, Hesami M, Tavakoli N, Hasani-Sharamin P, Hatami ZA, Dadashi F, et al. At-risk COVID-19 Patients; knowledge and attitude of those in need of transfer to hospital and consequences in non-transferred patients. Health Scope. 2022;11(1):e119063. doi: 10.5812/jhealthscope-119063.

Jamshidi P, Hajikhani B, Mirsaeidi M, Vahidnezhad H, Dadashi M, Nasiri MJ. Skin manifestations in COVID-19 patients: Are they indicators for disease severity? A systematic review. Front Med. 2021;8:634208. doi: 10.3389/fmed.2021.634208. [PubMed: 33665200].

Farinazzo E, Dianzani C, Zalaudek I, Conforti C, Grabbe S, Goldust M. Synthesis of the data on COVID-19 skin manifestations: underlying mechanisms and potential outcomes. Clin Cosmet Investig Dermatol. 2021;14:991-7. doi: 10.2147/CCID.S325552. [PubMed: 34385830].

Hassanzadeh S, Djamali A, Mostafavi L, Pezeshgi A. Kidney complications following COVID-19 vaccination; a review of the literature. J Nephropharmacol. 2022;11(1):e1.

Mahmoudinezhad SS, Moradi K, Boushehri N. Perspectives for restriction of dental treatment complexity during and

after Covid-19. Bull Natl Res Cent. 2022;46(1):49. doi: 10.1186/s42269-022-00739-7. [PubMed: 35261540].

Genovese G, Moltrasio C, Berti E, Marzano AV. Skin manifestations associated with COVID-19: current knowledge and future perspectives. Dermatology. 2021;237(1):1-12. doi: 10.1159/000512932. [PubMed: 33232965].

Pezeshgi A, Mubarak M, Djamali A, Mostafavi L, Moghadam-Kia S, Alimohammadi N, et al. COVID-19-associated glomerulopathy and high-risk APOL1 genotype; Basis for a two-hit mechanism of injury? A narrative review on recent findings. J Nephropathol. 2021;10(2):e11. doi: 10.34172/jnp.2021.11.

Gondo HK. The effect of spirulina on apoptosis through the caspase-3 pathway in a Preeclamptic Wistar rat model. J Nat Sci Biol Med. 2021;12(3):280-4.

Hu B, Zhang Z. Evaluation of Big Data Analytics and cognitive computing in smart health systems. J Commer Biotechnol. 2022;27(2). doi: 10.5912/jcb1088.

Kitano H. Systems biology: a brief overview. Science. 2002;

(5560):1662-4. doi: 10.1126/science.1069492. [PubMed: 11872829].

Mubarak M, Tolouian R, Pezeshgi A. Collapsing glomerulopathy following COVID-19 infection; possible relationship with APOL1 kidney risk alleles in African-Americans. Immunopathol Persa. 2020;6(2):e18. doi: 10.34172/ipp.2020.18.

Sanjaya A. microRNA-379 as a candidate biomarker for early diagnosis of childhood active and latent tuberculosis. Biol Med. 2022;13(1):9-20.

Yang W, Zhang X, Yang X. Analysis of health informatics and bioinformatics connectivity modeling. J Commer Biotechnol. 2022;27(3). doi: 10.5912/jcb1154.

Girdharwal N. COVID-19 Lockdown: A Study on behavioural Pattern-A systematic review in DELHI-NCR, India. J Complement Med Res. 2020;11(1):199-204. doi: 10.5455/jcmr.2020.11.01.21.

Marraha F, Al Faker I, Gallouj S. A Review of the dermatological manifestations of Coronavirus disease 2019 (COVID-19). Dermatol Res Pract. 2020;2020:9360476-. doi: 10.1155/2020/9360476. [PubMed: 32849867].

Valerio A, Nisoli E, Rossi AP, Pellegrini M, Todesco T, El Ghoch M. Obesity and Higher Risk for Severe Complications of Covid-19: What to do when the two pandemics meet. J Popul Ther Clin Pharmacol. 2020;27(1):31-6. doi: 10.15586/jptcp.v27iSP1.708. [PubMed: 32650354].

Conti P, Caraffa A, Gallenga C, Ross R, Kritas S, Frydas I, et al. Coronavirus-19 (SARS-CoV-2) induces acute severe lung inflammation via IL-1 causing cytokine storm in COVID-19: a promising inhibitory strategy. J Biol Regul Homeost

Agents. 2020;34(6):1971-5. doi: 10.23812/20-1-E. [PubMed: 33016027].

Hirano T. IL-6 in inflammation, autoimmunity and cancer. Int Immunol. 2021;33(3):127-48. doi: 10.1093/intimm/dxaa078. [PubMed: 33337480].

Chegini R, Mojtahedi Z, Lakkakula BV, Pezeshgi A, Niazi S, Nasri H. COVID-19 and the kidney; mechanisms of tubular injury by SARS-CoV-2. J Renal Inj Prev. 2020;10(1):e08. doi: 10.34172/jrip.2021.08.

Tang Y, Liu J, Zhang D, Xu Z, Ji J, Wen C. Cytokine storm in COVID-19: the current evidence and treatment strategies. Front Immunol. 2020;11:1708. doi: 10.3389/fimmu.2020.01708. [PubMed: 32754163].

Israël A. The IKK complex, a central regulator of NF-kappaB activation. Cold Spring Harb Perspect Biol. 2010;2(3):a000158. doi: 10.1101/cshperspect.a000158. [PubMed: 20300203].

Ghiasi F, Hosseinzadeh Z, Nemati F, Kheiry M, Normohammadi A, Sharifi N. The effect of cognitive-behavioral therapy (CBT) on anxiety reduction in critical care unit (CCU) patients during hospitalization. J Intellect Disabil Diagn Treatt. 2021;9(3):304-10. doi:10.6000/2292-2598.2021.09.03.6

Cahill CM, Rogers JT. Interleukin (IL) 1β induction of IL-6 is mediated by a novel phosphatidylinositol 3-kinase-dependent AKT/IκB kinase α pathway targeting activator protein-1. J Biol Chem. 2008;283(38):25900-12. doi: 10.1074/jbc.M707692200. [PubMed: 18515365].

Wu J, Li X, Li D, Ren X, Li Y, Herter EK, et al. MicroRNA-34 family enhances wound inflammation by targeting LGR4. J Invest Dermatol. 2020;140(2):465-76. doi: 10.1016/j.jid.2019.07.694. [PubMed: 31376385].

Li C, Hu X, Li L, Li JH. Differential microRNA expression in the peripheral blood from human patients with COVID-19. J Clin Lab Anal. 2020;34(10):e23590. doi: 10.1002/jcla.23590. [PubMed: 32960473].

Zhang Z, Yang X, Liu O, Cao X, Tong J, Xie T, et al. Differentially expressed microRNAs in peripheral blood mononuclear cells of non-segmental vitiligo and their clinical significance. J Clin Lab Anal. 2021;35(2):e23648. doi: 10.1002/jcla.23648. [PubMed: 33169883].

Chang R, Yi S, Tan X, Huang Y, Wang Q, Su G, et al. MicroRNA-20a-5p suppresses IL-17 production by targeting OSM and CCL1 in patients with Vogt-Koyanagi-Harada disease. Br J Ophthalmol. 2018;102(2):282-90. doi: 10.1136/bjophthalmol-2017-311079.

Valizadeh M, Mirzaei B, Tavallaei M, Noorani MR, Amiri M, Soroush MR, et al. Down-regulation of TGF-b1, TGF-b receptor 2, and TGF-b-associated microRNAs, miR-20a and miR-21, in skin lesions of sulfur mustard-exposed Iranian war veterans. J Recept Signal Transduct Res. 2015;35(6):634-9. doi: 10.3109/10799893.2015.1041646. [PubMed: 26498464].

Carpi S, Polini B, Fogli S, Podestà A, Ylösmäki E, Cerullo V, et al. Circulating microRNAs as biomarkers for early diagnosis of cutaneous melanoma. Expert Rev Mol Diagn. 2020;20(1):19-30. doi: 10.1080/14737159.2020.1696194. [PubMed: 31747311].

Li L, Xie Z, Qian X, Wang T, Jiang M, Qin J, et al. Identification of a potentially functional circRNA-miRNA-mRNA

regulatory network in melanocytes for investigating pathogenesis of vitiligo. Front Genet. 2021;12:663091. doi: 10.3389/fgene.2021.663091. [PubMed: 33968138].

Zhang T, Feng H, Zou X, Peng S. Integrated bioinformatics to identify potential key biomarkers for COVID-19-related chronic urticaria. Front Immunol. 2022;13:1054445. doi: 10.3389/fimmu.2022.1054445. [PubMed: 36531995].

Rybkina K, Davis‐Porada J, Farber DL. Tissue immunity to SARS‐CoV‐2: role in protection and immunopathology. Immunol Rev. 2022;309(1):25-39. doi: 10.1111/imr.13112. [PubMed: 35752871].

Coperchini F, Chiovato L, Ricci G, Croce L, Magri F, Rotondi M. The cytokine storm in COVID-19: Further advances in our understanding the role of specific chemokines involved. Cytokine Growth Factor Rev. 2021;58:82-91. doi: 10.1016/j.cytogfr.2020.12.005. [PubMed: 33573850].

Khalil BA, Elemam NM, Maghazachi AA. Chemokines and chemokine receptors during COVID-19 infection. Comput Struct Biotechnol J. 2021;19:976-88. doi: 10.1016/j.csbj.2021.01.034. [PubMed: 33558827].

Ghasemzadeh M, Ghasemzadeh A, Hosseini E. Exhausted NK cells and cytokine storms in COVID-19: Whether NK cell therapy could be a therapeutic choice. Hum Immunol. 2022;83(1):86-98. doi: 10.1016/j.humimm.2021.09.004. [PubMed: 34583856].

Utami AT, Qarrah AGA. Benefi ts of ginger as medicine for COVID-19: literature study. Biomed Environ Sci. 2022;


Carnevale S, Ghasemi S, Rigatelli A, Jaillon S. The complexity of neutrophils in health and disease: focus on cancer. Semin Immunol. 2020;48:101409. doi: 10.1016/j.smim.2020.101409. [PubMed: 32958359].

Sawant KV, Xu R, Cox R, Hawkins H, Sbrana E, Kolli D, et al. Chemokine CXCL1-mediated neutrophil trafficking in the lung: role of CXCR2 activation. J Innate Immun. 2015;7(6):647-58. doi: 10.1159/000430914. [PubMed: 26138727].

Arcanjo A, Logullo J, Menezes CCB, de Souza Carvalho Giangiarulo TC, dos Reis MC, de Castro GMM, et al. The emerging role of neutrophil extracellular traps in severe acute respiratory syndrome coronavirus 2 (COVID-19). Sci Rep. 2020;10(1):19630. doi: 10.1038/s41598-020-76781-0. [PubMed: 33184506].

Garcia-Bonilla L, Iadecola C, Anrather J. Inflammation and immune response. Philadelphia: Elsevier; 2022.

Loffredo M, Lucero H, Chen DY, O’Connell A, Bergqvist S, Munawar A, et al. The in-vitro effect of famotidine on SARS-CoV-2 proteases and virus replication. Sci Rep. 2021;11(1):5433. doi: 10.1038/s41598-021-84782-w. [PubMed: 33686143].

Ferstl R, Frei R, Barcik W, Schiavi E, Wanke K, Ziegler M, et al. Histamine receptor 2 modifies iNKT cell activity within

the inflamed lung. Allergy. 2017;72(12):1925-35. doi: 10.1111/all.13227. [PubMed: 28618071].

Branco AC, Yoshikawa FS, Pietrobon AJ, Sato MN. Role of histamine in modulating the immune response and inflammation. Mediators Inflamm. 2018;2018:9524075. doi: 10.1155/2018/9524075. [PubMed: 30224900].

Raker VK, Becker C, Steinbrink K. The cAMP pathway as therapeutic target in autoimmune and inflammatory diseases. Front Immunol. 2016;7:123. doi: 10.3389/fimmu.2016.00123. [PubMed: 27065076].

Eldanasory OA, Eljaaly K, Memish ZA, Al-Tawfiq JA. Histamine release theory and roles of antihistamine in the treatment of cytokines storm of COVID-19. Travel Med Infect Dis. 2020;37:101874. doi: 10.1016/j.tmaid.2020.101874. [PubMed: 32891724].