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Abstract

Background: Breast cancer is one of the leading causes of death in the world. Early diagnosis of breast cancer can reduce the rate
of mortality of this type of cancer. An increasing number of reports have confirmed the excellent sensitivity of dynamic contrast
enhanced magnetic resonance imaging (DCE-MRI). Despite the excellent sensitivity of DCE-MRI, there is still some difficulty in the
prediction of malignancy in these patients because of the lack of the optimum guidelines for the interpretation of breast magnetic
resonance (MR) studies as well as the reported overlap in T1 and T2 relaxation times.
Objectives: The aim of this study was to extract significant features from MRI images of the breast using chaos, fractal and time
series analysis and to classify breast tumors into malignant and benign using the calculated features.
Methods: In this research, we utilized the chaos theory and fractal analysis in the interpretation of breast tumors on DCE-MRI. This
cross-sectional study was done at Pardisnoor imaging center during years 2015 and 2016 in Iran. Our sample size was 18 mass lesions,
which were randomly selected among patients with BIRAD 3 and BIRAD 4 classification by the expert radiologist. The analysis was
performed after injecting patients with a contrast agent and 18 mass lesions were extracted from dynamic MR images. After pre-
processing and segmentation stages, time series of the tumor was generated for each MR image. The largest Lyapunov exponent
(LLE) and statistical parameters for each mass lesion were extracted. Also, fractal analysis was utilized to extract meaningful features
from mass contour to evaluate the roughness of tumor margin.
Results: We found that the value of LLE in malignant tumors was higher than benign mass lesions. The obtained results demon-
strated that chaos and time series features, such as LLE and non-circularity of the tumor, were the best parameters among all features.
Conclusions: The extracted descriptors can improve the performance of classifiers in the early detection of breast cancer. Signifi-
cant shape features can also help radiologists increase diagnosis accuracy in classification of suspicious breast masses.

Keywords: Chaos Analysis, Feature Extraction, Lyapunov Exponents, Breast Cancer, Dynamic MRI

1. Background

Breast cancer is a universal health problem in the fe-
male population. Although mammography remains the
most sensitive diagnostic procedure for the early detec-
tion of breast cancer, the low specificity of this method
can lead to unnecessary breast biopsies. To grapple with
this problem, magnetic resonance imaging (MRI) methods
have been investigated especially in females with dense
breast tissue. Injection of a contrast agent such as Gd-DTPA
can lead to higher sensitivity and specificity of MRI for the
early diagnosis of breast cancer (1).

The characteristics of malignant tumors such as spatial
heterogeneity, chaotic structures and fragile vessels, are
suitable to be studied by dynamic contrast enhanced mag-
netic resonance imaging (DCE-MRI) (2). Although DCE-MRI
is a powerful technique for visualizing angiogenesis, irreg-
ularity and chaotic features of breast tumors, there are no

papers with a focus on the chaotic behavior of breast tu-
mors using dynamic MRI. The low resolution of MRI can
be one of the main limitations, which can reduce its appli-
cations in these studies. On the other hand, an increasing
number of reports have confirmed the excellent potential
of chaos theory for analyzing different types of cancer us-
ing high resolution imaging techniques.

Lee et al. used time-intensity curve shape based on a
three-time-points (3TP) solution, which generates a color
map allowing kinetic analysis from the intensity levels and
can classify malignant and benign lesions (3).

Recent studies have shown that fractal analysis can be
helpful for quantifying chaotic and complicated patho-
logic architecture of tumors (4). Fractal dimension has
shown good performance in classification of cancers, es-
pecially in high-resolution imaging techniques as a repro-
ducible measure of complexity (5, 6). Researchers are well
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informed of the advances in chaos theory and nonlinear
dynamics and their clinical applications in the field of
medicine (7). Etehadtavakol et al. used nonlinear dynam-
ics utilizing Lyapunov exponents (LE) in breast thermo-
grams to identify abnormal lesions of the breast (8). Abe
et al. showed an application of the largest Lyapunov ex-
ponent (LLE) for characterizing brain structural informa-
tion on MRI control and mental disorders (9). It was re-
cently reported that cell shape, sub-cellular sizes and spa-
tial intracellular distribution could control how molecules
interact to produce a cellular behavior (10). The behavior
of malignant and benign cells and their spatial distribu-
tion can affect the shape, margin and texture of malignant
and benign tumors in the larger scale. Finding a way to
mathematically analyze tumor margin and its texture in
the large scale can improve the diagnosis accuracy in clas-
sifying malignant and benign tumors. Although it would
be better to study molecular and cellular behavior of tu-
mors, the resolution of medical imaging techniques is a
major limitation of this study. Therefore, we need to study
footprints of tumor cellular distribution in different scales
using fractal and chaos theory as mentioned before. Badas
et al. presented 3D finite time Lyapunov exponent evolu-
tion inside a left ventricle in-vitro model mimicking phys-
iological human conditions (11). Rangayyan et al. used
the ruler method and the box-counting method for estima-
tion of fractal dimension from contours of breast masses
(12). Beheshti et al. showed that extracting fractal features
from contours of masses on different types of breast den-
sity mammograms was able to successfully classify breast
tumors (13). The success of chaos analysis in biomedical
research persuades us to use this method in the early de-
tection of breast cancer as an important unsolved health
problem. This is the first research on the application of
chaos in breast cancer diagnosis on DCE-MRI.

2. Objectives

The aim of this study was to look for possible differ-
ences between malignant and benign breast masses using
fractal analysis, nonlinear chaotic dynamical systems and
time series of tumor contour on DCE-MRI. We extracted
several chaotic features to quantify the degree of chaos in
breast tumor margins. Also we utilized fractal analysis in
extracting fractal features to analyze the texture of breast
tumors and make comparisons with chaos features. These
features can improve the efficiency of classifiers to develop
computer-aided diagnosis models and decrease misclassi-
fication rate of breast cancer diagnosis.

3. Methods

3.1. Database

Our study group consisted of 13 patients whose ages
ranged from 18 to 57 years (mean 40.2 years). Our sample
size was 18 mass lesions that consisted of nine malignant
lesions and nine benign entities, which were randomly se-
lected among patients with BIRAD 3 and BIRAD 4 classi-
fication by the expert radiologist. The inclusion criteria
consisted of there being at least one mass (with BIRAD 3
or BIRAD 4 classification) in the subject’s breast and the
availability of patient’s MR images with standard imaging
protocol. On the other hand, pregnant patients and aller-
gic patients to gadolinium contrast agent were excluded
from our study. We did not have any missing value in our
database. Informed consent was obtained from all patients
or their relatives. All patients underwent a surgical biopsy.
Their basic information is presented in Table 1.

3.2. Data Acquisition

Magnetic resonance imaging was performed at the Par-
disnoor imaging center during years 2015 and 2016, using
a calibrated 1.5 Tesla ACHIEVA Philips MR scanner in the
prone position with a specific breast coil. The dynamic
study was performed after injection of 0.1 (mmol/kg) of
gadopentetate dimeglumine. The DCE portion of the MRI
was based on a standard clinical protocol that consisted of
a series of T1 weighted, fat-suppressed, three-dimensional
gradient echo acquisitions in the axial plane with the fol-
lowing parameters: repetition time, 4.9 - 5.4 ms; echo time,
2 - 2.5 ms; 10° flip angle, field of view, 240 × 240 (mm2),
voxel size, 1 × 1 × 1 (mm3), matrix, 320 × 320 and tempo-
ral resolution of 80 - 90 seconds (14).

3.3. Time Series Extraction

The extracted time series from tumor margin, which
can be considered as a nonlinear system contains valu-
able diagnostic information. To capture this information,
conventional methods, such as Fourier transform, were
not successful due to the nonlinearity of system dynam-
ics. Chaos analysis is a suitable alternative to describe non-
linear and complex systems. In this paper, we considered
breast tumors as a nonlinear complex system, which can
be described by a strange attractor in phase space (PS). The
time evolution of these observables in the state-space es-
tablishes a trajectory (8). We didn’t have enough informa-
tion about the dynamics of the system. We had only one
TS measurement (8). In such case, it is not possible to find
the exact PS of the system. Therefore, a pseudo-PS may still
be constructed. This pseudo-PS is called the reconstructed
phase space (RPS) (8). In this research, Time Delay Embed-
ding (TDE) method was used for PS reconstruction.
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Table 1. Lesion Characteristics

Lesion Number Gender Pathology BIRAD Classification Age Type

1 Female Benign 4b 33 Fibroadenoma

2 Female Benign 4 35 Fibroadenoma

3 Female Benign 4b 18 Intraductal Papilloma

4 Female Benign 4 42 Intraductal Papilloma

5 Female Benign 4b 37 Invasive Ductal Carcinoma

6 Female Benign 4 42 Intraductal Papilloma

7 Female Benign 4a 57 Fibroadenoma

8 Female Benign 4a 40 Intraductal Papilloma

9 Female Benign 4 36 Fibroadenoma

10 Female Malignant 4b 37 Invasive Ductal Carcinoma

11 Female Malignant 4b 37 Invasive Ductal Carcinoma

12 Female Malignant 4b 43 Invasive Ductal Carcinoma

13 Female Malignant 4b 43 Invasive Ductal Carcinoma

14 Female Malignant 4a 53 Invasive Ductal Carcinoma

15 Female Malignant 3 53 Invasive Ductal Carcinoma

16 Female Malignant 4b 43 Invasive Ductal Carcinoma

17 Female Malignant 4c 36 Invasive Ductal Carcinoma

18 Female Malignant 4b 38 Invasive Ductal Carcinoma

In order to extract the time series from tumor bound-
ary, we selected the best part of MR images for each tumor.
The center of gravity of the tumor was calculated in each
MR image and tumor margin was traced utilizing Fuzzy
C-Mean (FCM) segmentation method. The FCM is a fast
and easy to use segmentation method, which can be suit-
able to segment ill-defined breast tumors from the back-
ground (15, 16). Then, the distance of each pixel on the
tumor margin from the center of gravity was measured
and used for extracting the time series for all breast le-
sions. Using this method, we converted the tumor shape
into a time series. Figure 1 shows a typical MR image after
pre-processing and filtering by the median filter. Figure 2
shows the segmented tumor and its depicted contour us-
ing Fuzzy C-Mean segmentation algorithm and “bwtrace-
boundary” in Matlab.

Figure 3 shows time series extracted from the tumor
contour of Figure 2. We extracted chaos features from the
time series by calculating the LLE of the extracted time se-
ries. Figures 4 and 5 demonstrate the extracted benign and
malignant mass lesions, respectively, and their depicted
contour using the FCM method. Also, the centers of mass
of all tumors were shown in these images.

Figure 1. Filtered Image Using Median Filter

3.4. Embedding Dimension and Time Delay
We utilized time delay embedding to reconstruct the

phase space. A chaotic time series can be embedded into
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Figure 2. Segmented Tumor Using Fuzzy C-Mean Method
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Figure 3. Time Series Extracted From Tumor Contour

an RPS with an embedding dimension m and a time de-
lay J. In the TDE method, two parameters are necessary to
be selected and optimized, the embedding dimension, m,
and the time delay J. These parameters should be optimal
enough due to their impact on calculating the LEs (8). The
inherent system dimension was considered as d. Accord-
ing to Takens’ theorem, if the system dimension is d, we
can establish an RPS that is equivalent to the original PS by
embedding with a dimension m (greater than 2d + 1) (17).

In order to be able to identify an attractor, the time de-

lay should be selected optimally. Many methods have been
proposed for selecting an optimal time delay but it is still
not possible to apply a unique method for all types of data
(9). We used the autocorrelation indicator for time delay
estimation.

3.5. Calculation of Largest Lyapunov Exponent

To calculate the LLE, we considered a discrete system
with a 1-D map xk + 1 = f (xk), which evolves when it is started
at two initial conditions of x0 and (x0 + ε0) (10, 11). The pa-
rameter ε0 requires a small value to show the two initial
states are very close to each other. The Lyapunov exponent
is defined when the two trajectories are diverged by a dis-
tance εn after n iterations, as follows (Equation 1).

(1)|εn|≈ |ε0|enλ

Where λ is the Lyapunov exponent (10).

A practical numerical technique for calculating the LLE
is the method developed by Rosenstein et al. (9). Due to
its robustness to time delay and embedding dimension
changes, this well-known method was applied in this re-
search to calculate the LLE of the MRI-based time series (18).
We changed embedding dimension (m) in our program
from 2 to 5 and the best value was m = 2. The autocorrela-
tion method was used for time delay estimation. The im-
plementation of this method is easy because it utilizes a
simple measure of exponential divergence (9, 18).

3.6. Fractal Analysis

The concept of fractals was proposed by Mandelbrot to
describe objects with irregular structures (13). For quanti-
fying the complexity and self-similarity of the structure of
an object, a measure known as the fractal dimension (FD)
can be utilized (12). A self-similar structure was considered,
which consists of a number of self-similar pieces at the re-
duction factor 1/s (12). FD can be defined as follows (Equa-
tion 2):

(2)α =
1

SFD

Then, we have (Equation 3):

(3)FD =
log (α)

log
(
1
s

)
The most commonly used method for estimating FD is

the box-counting method. We used this method for calcu-
lation of fractal dimension and other fractal parameters.
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Figure 4. Extracted Benign Mass Lesions and Their Depicted Contour Using Fuzzy C-Mean Segmentation Method

Figure 5. Extracted Malignant Mass Lesions and Their Depicted Contour Using Fuzzy C-Mean Segmentation Method

3.7. Feature Extraction

We extracted a couple of chaos and fractal features
from breast tumor MR images. In addition to LLE, we cal-
culated the mean value of each time series as a measure
of tumor size. Also the variance of time series was calcu-

lated. The LLE was calculated as a measure of chaos in the
extracted time series. We calculated the variance of Lya-
punov exponents (VarLE) to obtain another TS feature and
quantify the spread of Lyapunov exponents. Also, we uti-
lized fractal analysis to extract significant fractal features
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besides the time series descriptors.

For classification of benign and spiculated masses, we
used roughness in the boundary of masses as one of the
main fractal features. Spiculated masses have rough vari-
ation in boundaries whereas the benign masses are round
and with smooth variation (13). Therefore, the variation of
FDs in different scales was utilized to extract important in-
formation for classification. N2 as shown in Equation 4 de-
scribes the amount of changes in FDs in different scales
with respect to the maximum number of FDs, which is
measured on the smallest scale. This feature, especially in
low scales, has the information of spiculation with high
resolution (13).

(4)N2 = 1− NB

Max (NB)

Where NB indicates FDs of the boundary of the mass.

Another feature, used in the classification of different
masses, was circularity of the mass. We proposed two cir-
cularity measures in this research, Circ and NonCirc. The
former shows the circularity of tumor and the latter indi-
cates the non-circularity of the mass. These features can be
defined as Equations 5 and 6:

(5)Circ =
4π

CL

(6)NonCirc =
max (TS)−min (TS)

Mean (TS)

Where CL indicates the length of mass contour and TS
is the extracted time series of mass contour. The mean
value of TS indicates the average radius of the tumor and
the difference between TS maximum and minimum can
quantify the degree of deviation from the circular shape.

It should be noted that all the implementations of
feature extraction process were performed on a 2.53-GHz
laptop computer, with 4 GB random access memory, in
the MATLAB 7.12.0.635 software environment (MathWorks,
Inc).

3.8. Statistical Analysis

In this cross-sectional study we selected 18 samples us-
ing a systematic sampling method. We used Pierson’s cor-
relation analysis to present the significance of each param-
eter. Due to the small size of our database, it cannot have
a normal distribution. We performed bootstrap method
based on 5,000 bootstrap samples to solve the problem of
small sample size. The obtained results are reported in Ta-
ble 2.

3.9. Statistical Software

Statistical analysis was performed using the SPSS soft-
ware for windows, version 19.0.0 (SPSS Inc., Chicago, IL).

This study was considered by the ethical committee of
our university, and as it used available information of pa-
tients for regular diagnostic procedures, it was approved
by this committee. We did not change any standard diag-
nostic procedure or imaging protocols.

4. Results and Discussion

The plot of Lyapunov exponents is depicted in Figure
6 for typical benign and malignant mass lesions. We ex-
tracted several chaotic, fractal and time series features and
evaluated them by correlation analysis. Table 3 shows the
extracted features and their values. In this malignant ma-
lignant and benign cases were coded with 1 and 0, respec-
tively. As can be seen in Table 3, the LLE of all time series
was positive. This fact indicates chaos in these time series.
The majority of breast tumors had an irregular shape and
ill-defined margin. We traced their contour according to
the gray level values and concentration of contrast agent.
The obtained results show that the degree of chaos in ma-
lignant cases was higher than benign cases, as expected. Ta-
ble 2 shows positive and negative correlations with pathol-
ogy results. According to this table, LLE and non-circularity
with the correlation of 0.745 (P value = 0.000) and -0.494
(P value = 0.037) respectively, showed a higher correlation
with pathology results in comparison with other features.

The low resolution of MRI, time delay, and embed-
ding dimension estimation were our leading limitations
in this research. One of the limitations of our study was
that the results depended on the resolution of MR image.
The higher the resolution, the more accurate extraction of
chaos and fractal features. Also, the segmentation method
plays an important role in the calculation of features. Ac-
curate segmentation can lead to an accurate diagnosis us-
ing this method. It was difficult to segment breast tumors
due to their vague and unclear margins. One of the strong
points of our study was the use of fuzzy C-mean segmen-
tation, which is fast and consistent. C-mean segmentation
worked better than region growing methods on MRI im-
ages. Also, finding new significant features such as LLE,
varLE and non-circularity were the other strong points of
our study. This method is a non-invasive, quick, painless
and non-radiational method (20), which can successfully
help radiologists diagnose breast tumors more accurately,
although it requires a larger database.

According to Table 3, if we choose a threshold of 0.17
just for LLE, we can correctly classify 17 out of 18 mass le-
sions. The only misclassified lesion was L1, which showed
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Table 2. Bootstrap Analysis Based on 5000 Bootstrap Samples

Pathology LLE N2 Mean Var varLE circ1 noncirc

Pathology (Pierson’s correlation) 1 0.745 -0.336 -0.307 -0.352 0.419 0.381 -0.494

P Value 0 0.172 0.215 0.152 0.083 0.119 0.037

Bootstrap

Bias 0 0.035 0.002 0.009 -0.034 0.068 -0.002 0.009

Std. Error 0 0.089 0.211 0.203 0.133 0.138 0.201 0.184

95%Confidence Interval

Lower 1 0.614 -0.695 -0.639 -0.647 0.249 -0.061 -0.822

Upper 1 0.943 0.118 0.160 -0.105 0.796 0.718 -0.094

Figure 6. Diagram of Lyapunov Exponents for A, a Benign and B, a Malignant Mass
Lesion
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The slope of the first linear part of a curve fitted to these points was the LLE (19). This
slope is higher in malignant tumors in comparison with benign ones.

a higher LLE in comparison with other benign patterns.
This can be due to its larger size and segmentation errors.
The second significant descriptor with Pearson’s correla-
tion of -0.494 was NonCirc. It showed the degree of non-
circularity of the mass and as can be seen in Table 3, it
had higher values in benign lesions. We can conclude that
non-circular and long tumors are more likely to be benign
rather than malignant. As indicated by Table 3, highest

non-circularity index in L2, L3, L6 and L7 and all of these tu-
mors was benign.

4.1. Conclusions

According to the obtained results, it can be concluded
that the time series extracted from breast tumor margin
showed chaotic behavior and can be described by a non-
linear chaotic dynamical system. In order to measure the
degree of chaos in time series of MR images, we com-
puted the largest Lyapunov exponent using Rosenstein’s
method. We found that the value of LLE in malignant tu-
mors was higher than benign mass lesions. This indicated
a high Pearson’s correlation of 0.745 (P value = 0.000) with
pathology results. We can conclude that the LLE is one of
the leading features in the early detection of breast cancer
using dynamic MRI. Also, the variance of Lyapunov expo-
nents (VarLE) was a significant feature in the prediction of
malignancy. Moreover, we applied N2 as a fractal feature
and NonCirc (P value = 0.037) on our dataset to evaluate
the performance of fractal and time series features. These
features were used to identify roughness of the mass con-
tours, which is meaningful for radiologists in the diagno-
sis of spiculated masses. The obtained results indicate that
non-circular and long tumors are more likely to be benign
rather than malignant. Although the low resolution of MRI
can reduce the accuracy of feature extraction, it can be im-
proved by image processing solutions. Considering all lim-
itations, LLE is still the best feature in comparison with
other features. In conclusion, using non-linear dynamics
and chaos to establish computer aided diagnosing models
for early detection of breast cancer was a successful chal-
lenge.

Footnotes

Authors’ Contribution: Study concept and design: Ma-
jid Pouladian and mahyar Nirouei; analysis and interpreta-
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Table 3. The Extracted Chaos, Fractal and Time Series Features

Lesion Pathology LLE N2 Mean Var varLE Circ NonCirc

1 0 0.2164 0.9953 27.3562 6.5244 0.2205 0.0744 0.4562

2 0 0.0558 0.9951 24.1196 54.0225 0.0429 0.0694 1.2947

3 0 0.0317 0.9941 21.0427 98.2916 0.0102 0.08 1.5356

4 0 0.0301 0.9893 12.1912 2.3557 0.2575 0.1721 0.4143

5 0 0.1575 0.9952 25.5841 7.6092 0.0982 0.0795 0.4176

6 0 0 0.9978 43.2796 324.1108 0 0.0373 1.5094

7 0 0.0534 0.9931 16.7414 40.9627 0.0807 0.1065 1.4756

8 0 0.0648 0.9916 15.0867 14.8594 0.1679 0.1102 0.9855

9 0 0.0646 0.9908 14.4089 11.0714 0.2442 0.1412 0.9625

10 1 0.4254 0.9931 20.8533 2.4596 0.3288 0.1022 0.3169

11 1 0.2594 0.9904 14.5141 4.5455 0.3891 0.1412 0.5103

12 1 0.8283 0.9897 12.661 0.9814 1.6171 0.1698 0.3091

13 1 0.3242 0.9897 11.5839 8.2113 0.3283 0.1904 0.8341

14 1 0.3412 0.9951 24.4411 23.2672 0.071 0.0816 0.7624

15 1 0.2549 0.9916 16.0728 11.1049 0.2858 0.1244 0.7386

16 1 0.1998 0.9874 11.1149 0.769 0.3616 0.1995 0.3151

17 1 0.3343 0.9939 20.1306 12.3159 0.2681 0.0967 0.6577

18 1 0.3416 0.9951 25.7149 29.5352 0.1013 0.0726 0.9397
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