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Abstract

Background: Asthmatic chronic rhinosinusitis with nasal polyps (aCRSwNP) is a common disruptive eosinophilic disease. How-
ever, up to now, there is no effective medical treatment for the disease, which is partly due to that the molecular mechanism of
aCRSwNP is still unknown.
Objectives: The aim of this study was to facilitate the systematic discovery of diagnostic biomarkers of aCRSwNP based on integrat-
ing pathways, differentially expressed genes (DEGs), and mutual information networks (MINs).
Methods: This was a foundation-application study carried out in Dongying, Shandong Province, P.R. China, in 2016. First, the gene
expression profile of aCRSwNP composed of 13 normal samples and 21 aCRSwNP samples was recruited from the gene expression om-
nibus (GEO) database (http://www.ncbi.nlm.nih.gov/geo/) and then, data preprocessing was performed. Second, the attract method
was utilized to identify differential pathways. In the following, MINs were constructed and underwent topological analysis. Then,
DEGs were examined in aCRSwNP group and normal control group to identify significant genes and key genes. Finally, the support
vector machine (SVM) with C-classification was utilized to evaluate the performance of the classification.
Results: A total of 11,100 genes and 273 pathways (gene count > 5) were initially obtained. Then, 5 differential pathways which
contained 346 genes were identified. Topological analysis conducted on the MINs revealed 20 hub genes (degree centrality ≥ 220).
In the following, 795 DEGs were identified (|log fold change (FC)|≥ 2.0, P value≤0.01). Furthermore, 35 significant genes and 14 key
genes were detected. Finally, the results of SVM with C-classification indicated that the key genes gave the best result.
Conclusions: Our research identified several key genes (such as IL6R), which might play key roles in the occurrence and develop-
ment of aCRSwNP. We predicted that these genes might provide additional diagnostic and therapeutic targets for aCRSwNP.
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1. Background

It is known that both of chronic rhinosinusitis with
nasal polyposis (CRSwNP) and asthma are complex inflam-
matory disorders and are therapeutic challenges for health
care system (1). There are approximately 30% with asthma
and 15% with aspirin intolerance in patients with CRSwNP
(2). Asthmatic chronic rhinosinusitis with nasal polyps
(aCRSwNP) is a common disruptive eosinophilic disease
with no effective medical treatment (3). This is mainly due
to that the molecular mechanism of aCRSwNP is still un-
known.

It is also well known that the development and pro-
gression of a certain disease are related to accumulated
molecular genetics or genomic changes (4). To predict
the outcome of certain treatments or classify diseases into
subtypes, the gene-expression microarrays can provide a
tool to genetically profile diseases (5). The differential ex-
pression of several genes has been confirmed to be associ-
ated with aspirin-sensitive aCRSwNP and several genes and

gene sets have been indicated to be implicated in the ear-
lier stages of eosinophilic inflammation (6). In spite of ex-
panded efforts to study the genetic bases of aCRSwNP, the
exact genes that play key roles in the development and pro-
gression are still unknown.

Identification of differentially expressed genes (DEGs)
via gene expression analysis across various cell cycle states,
biological conditions, subjects, and tissues may help se-
lect potential biomarkers for diseases (7). However, as the
gene size gets larger, the probability of a false identifica-
tion may increase (8). The cross validation of datasets can
significantly reduce those false findings and increase sen-
sitivity (9). At present, along with the development of high-
throughput testing technology, a large-scale of protein in-
teractions has been accumulated. However, there is still a
large amount of significant interactions such as key genes
in significant pathways that have not been tested (10).
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2. Objectives

In the present study, to reveal the molecular mech-
anism of aCRSwNP, the pathways, DEGs, and mutual in-
formation networks (MINs) were integrated together to
conducted analysis on the aCRSwNP. Our work demon-
strated a practical framework for complex disease candi-
date biomarker analysis at a comprehensive level; the re-
sults might provide an effective avenue to combat this
complicated illness and this strategy could be applied to
other complex diseases.

3. Methods

This was a foundation-application study carried out in
Dongying, Shandong Province, P.R. China, in 2016. In the
present study, analysis was conducted on the gene expres-
sion of aCRSwNP to identify several biomarkers associated
with aCRSwNP. The schematic diagram of analysis proce-
dure is shown in Figure 1.

3.1. Data Recruiting

It is well known that the gene expression omnibus
(GEO) at the national center for biotechnology informa-
tion (NCBI) (http://www.ncbi.nlm.nih.gov/geo/), which is
located in Bethesda, MD, USA, is the largest fully pub-
lic repository for high-throughput molecular abundance
data, primarily gene expression data (11). Up to now, there
are a total of 4348 datasets in the database. In the present
study, under the filter conditions of “Homo sapiens”, “tran-
scription profiling by array”, and “neither too large nor too
small assays samples”, the gene expression profile of aCR-
SwNP with accessing number of GSE23552 (6) was obtained
from GEO database. The data of GSE23552, existed on A-
AFFY-143 - Affymetrix GeneChip Human Exon 1.0 ST Array
version 1, [HuEx-1_0-st-v1] platform, were composed of 13
normal samples and 21 aCRSwNP samples. We downloaded
all of the annotation files and microarray data.

3.2. Data Preprocessing

Prior to analysis, data preprocessing was performed to
control the quality of gene expression data. First of all,
the robust multi-array average (RMA) method was applied
to conduct background correction to eliminate the influ-
ence of nonspecific hybridization (12). The observed Per-
fect match (PM) probes were modeled as the sum of a nor-
mal noise component N (Normal with mean µ and vari-
anceσ2) and an exponential signal component S (exponen-
tial with mean α). The normal was truncated at zero, so as
to avoid any possibility of negatives. Given that there was
A observed intensity, we adjusted the data according to the
following formula.
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Where i = m-µ-σ2α, and j = σ. ∅ and Φ represented the
normal distribution density and distribution functions, re-
spectively.

Then, the quantiles based algorithm was performed to
conduct mismatch (MM) correct analysis of normalization
(13). The transformation was determined by the following
formula:

gn = Y −1 (T (gn))

Where the value of T was estimated via each array’s em-
pirical distribution and Y was determined via the averaged
sample quantiles’ empirical distribution.

In the following, the “mas” method was used to carry
out PM/MM correction. An ideal mismatch was subtracted
from PM for that the ideal MM would always be less than
the corresponding PM.

The summarization method was “median polish” (12).
A multichip linear model was fit to data from each probe
set. In particular, for a probe set r with s = 1, …, Sr probes
and data from q = 1,…, Q arrays, we fitted the following
model

log2
(
PMr

sq

)
= αr

s + βr
q + εrsq

Whereαs was a probe effect andβq was the log2 expres-
sion value.

Finally, the gene expression profile on probe level was
converted into gene symbol level, and the duplicated sym-
bols were wiped off, which resulted in a total of 11,100 gene
symbols to be obtained.

3.3. Identifying Differential Pathways

In order to gain further insights into the function en-
richment of the genes of the aCRSwNP, differential path-
ways analysis was conducted on the gene expression pro-
file. In this study, there were two steps for identifying dif-
ferential pathways. First of all, the database for annotation,
visualization and integrated discovery (DAVID) (14) was
used to perform kyoto encyclopedia of genes and genomes
(KEGG) pathway enrichment analysis of the genes, so as to
mine the biochemistry pathways which might be involved
during the progress of the aCRSwNP. The pathways whose
gene count was > 5 were selected for further analysis.

Then, the attract method, a knowledge-driven ana-
lytical approach that could best discriminate the condi-
tions between cell phenotypes to identify and annotate the
gene-sets (15), was used to determine the differential path-
ways in the present research. GSEA-ANOVA, an analysis of
variance-based implementation of a gene set enrichment
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Figure 1. The Schematic Diagram of the Analysis Procedure

algorithm, was utilized to test pathway-level data, so as to
identify the values of the F-statistic (15). The larger the F-
statistic values, the stronger the associations were, hence
a small F-statistic suggested that the gene demonstrated
minimal cell type-specific expression changes. To test this
relationship more formally, the T-test and a Welch modifi-
cation were used to adjust the P value, and the adjusted P-
value was set in ascending order; the top 5 pathways were
regarded as differential pathways. Meanwhile, the genes
enriched in the differential pathways were considered as
pathway genes.

3.4. Network Construction and Topological Analysis

3.4.1. Network Construction

In the present study, MINs, a subcategory of network
inference approaches, were constructed to further disclose
the relationships among the pathway genes (16). The fun-
damental principle of this group of methods is to deduce
a link among a series of nodes in case of that there is a
high score based on mutual information (MI) (17). In the
present study, MIN construction for pathway genes com-
prised three steps.

First of all, the mutual information matrix (MIM) was
calculated. MIM is a square matrix in which, a, b-th ele-
ments take the MI between the random genes Xa and Xb,
and q is a probability measure.

MIMab = I (Xa;Xb) =
∑

a,b
q (xa, yb) log

q (xa, yb)

q (xa) q (yb)

Second, an edge score for each pair of nodes was com-
puted by CLR algorithm. CLR algorithm is an extension of
the relevance network approach (18). It computed the MI
for each pair of genes and derived a score related to the em-
pirical distribution of the MI values (16). Specially, it mainly
considered the edge score instead of taking into account
the information I (Xa; Xb) between genes Xa and Xb:

zab =
√
z2a + z2b

Of which

za = max

(
0,
I (Xa;Xb − µa)

σa

)
Where µa and σa respectively represented the sample

mean and standard deviation of the empirical distribution
of the values I (Xa; Xb).

The last step was inputting the genes and edge scores
into the igraph software package (19) to visualize the MIN.

3.4.2. Topological Analysis of MIN

As is well known, the role of a node in a network struc-
ture not only is in association with the node itself, but
also depends on the adjacent nodes that are in connec-
tion together and the topological structure of the network
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(20). Further to investigate biological functions and sig-
nificance of nodes in the network, the indices of topolog-
ical analysis (degree (21), closeness (22), and betweenness
(23)) are often characterized. Degree centrality was always
taken into account because it is the simplest topological
index for researchers to calculate. The more nodes that a
certain gene connected with, the more important the gene
was. The genes with high connections were called hub
genes. In this research, the genes with degree centrality≥
220 were considered as hub genes.

3.5. Identifying DEGs

In the last few years, to gain a snapshot of transcrip-
tional activity in different tissues or populations of cells
gene, some expression technologies have been frequently
used in molecular biology research (24). Limma, an
R/Bioconductor software package which can provide an in-
tegrated solution for analyzing data from gene expression
experiments, was utilized to determine the differential ex-
pression of the aCRSwNP group and normal control group
(25). In this study, empirical Bayes method (F test) (26)
was used for genes with scores greater than an adjustable
threshold to differentiate DEGs between aCRSwNP group
and normal control group. The false discovery rate (FDR)
was employed to proofread the P-values. These genes that
met the threshold values of |log fold change (FC)|≥ 2.0, as
well as P-value≤ 0.01, were considered as DEGs.

3.6. Identifying Significant Genes and Key Genes

Moreover, to further disclose the differential expres-
sion of pathway genes and the hub genes, the intersection
of DEGs and either pathway genes or hub genes were sep-
arately analyzed. The intersection of DEGs and pathway
genes was regarded as significant genes and the intersec-
tion of DEGs and hub genes was regarded as key genes.

3.7. Classification and Evaluation

In this paper, there were five kinds of gene data, includ-
ing pathway genes, hub genes, DEGs, significant genes,
and key genes. To determine the stand or fall of classifi-
cation results, the support vector machine (SVM) (27) with
C-classification was utilized to evaluate the performance
of the classification. To this end, all of the samples were
initially put together and divided randomly in 21:13; the
21 samples were chosen as the experimental group and
the 13 samples were selected as the control group. Next,
a 5-fold cross-validation was conducted on the train set to
evaluate the potential classification strength of the mod-
els, and then we estimated its prediction on a separate
test set. In order to evaluate the classification results, sev-
eral measures were employed to provide different insights.

These measures included the area under the receiver op-
erating characteristics curve or in short AUC, true positive
rate (TPR), true negative rate (TNR), the Matthews coeffi-
cient correlation classification (MCC), and Youden’s index
(J) calculated using the following formula: J = maximum
[sensitivity(c) + specificity(c) - 1] (28). The combination of
these measures gave us an adequate overview of the classi-
fication performance.

4. Results

4.1. Identifying Differential Pathways

In the present study, the attract method was used to
determine the differential pathways. Based on what had
been indicated in the method we used two steps of identi-
fying differential pathways analysis in this research. First,
the significant dysregulated KEGG pathways for aCRSwNP
were analyzed based on DAVID. As we set the threshold
of gene count > 5, 273 pathways were obtained. Then,
the attract method was applied to analyze these path-
ways, so as to identify differential pathways. As afore-
mentioned in the methods, the top 5 pathways based on
the adjusted P values were regarded as differential path-
ways. Therefore, five differential pathways were identi-
fied as we ranked the pathways in descending order ac-
cording to their adjusted P values, which were cell adhe-
sion molecules (CAMs), hematopoietic cell lineage, intesti-
nal immune network for IgA production, olfactory trans-
duction, and allograft rejection, in sequence. Meanwhile,
there were 346 genes enriched in the differential pathways.

4.2. Network Construction and Topological Analysis

To further disclose the relationships between the path-
way genes, MIN was constructed. The MIN construction
for pathway genes was visualized by inputting the genes
and edge scores obtained via CLR algorithm into the igraph
software. All of the 346 pathway genes constituted a MIN
relationship. As topological analysis was conducted on the
MIN, and threshold values of degree centrality of the genes
set at≥ 220, we obtained 20 hub genes, as listed in Table 1.

4.3. Identifying DEGs

The diseases are always associated with the DEGs in the
disease conditions compared to normal conditions. To de-
termine the DEGs in the aCRSwNP group and normal con-
trol group, limma was utilized. Under the threshold values
of |log FC|≥ 2.0, as well as P value≤0.01, we obtained a to-
tal of 795 DEGs, which 337 genes were down-regulated and
458 genes were up-regulated.
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Table 1. The Degree Centrality of the Hub Genes

Gene Symbol Degree Centrality Gene Symbol Degree Centrality

CD4 303.61 CALM2 249.64

ITGB2 294.455 IL2RA 248.265

HLA - DMB 288.155 CD1A 241.36

CSF1R 286.96 CD6 239.535

CD3D 277.275 ADRBK2 237.095

CD1C 270.765 IL6R 229.445

PTPRC 266.635 CSF3R 229.17

CD3E 264.69 SELL 228.59

CD1E 259.19 TIGIT 227.69

ARRB2 257.71 CD28 225.435

4.4. Identifying Significant Genes and Key Genes

As the intersection of the pathway genes and the
DEGs was conducted, we gained 35 significant genes,
which were as following: CD80, HLA-DMA, HLA-DMB, IL2RA,
IL10, CD1A, CD1B, CD1C, CD1E, CCL28, CD6, CD3E, ITGB2,
FCER2, PTPRC, IL6R, CSF3R, ITGA1, ITGA2, CLDN11, PECAM1,
SELP, ITGA9, SELL, CDH2, NTNG2, NRXN1, NLGN4X, CADM3,
NFASC, OR51I1, PRKX, PRKG2, ADRBK2 and ARRB2. Further-
more, 14 key genes including: CD6, IL2RA, CSF3R, PTPRC,
ARRB2, SELL, IL6R, ITGB2, CD3E, CD1A, CD1C, CD1E, HLA-DMB,
ADRBK2 were identified via taking the intersection of the
hub genes and the DEGs.

4.5. Classification and Evaluation

In order to effectively determine whether evaluated
test methods were appropriate or not, SVM with C-
classification was utilized as a tool for evaluating the per-
formance of the classification. As is observed in the re-
ceiver operating characteristic (ROC) curve (Figure 3), the
areas of the three components including key genes, signif-
icant genes, and DEGs were the same, while the areas of the
pathway genes and the hub genes were the same. In ad-
dition, we can see from Table 2 that the result of the key
genes was the best by giving AUC = 0.94, Accuracy = 95,
TNR = 1, TPR = 0.92, MCC = 0.96 and Youden’s index = 0.92;
hence, we can conclude that the key genes best character-
ized the disease of aCRSwNP. MIN analysis on the key genes
and pathway genes indicated that there were 343 genes
and 2872 interactions in the network (Figure 2). The yellow
nodes stood for 14 key genes, while it was obvious that all
of the key genes were well clustered in the central location
of the network, indicating that these 14 genes might play
key roles in the occurrence and development of aCRSwNP.

5. Discussion

In this research, by applying the SVM method for anal-
ysis of the five types of genes data (DEGs, pathway genes,
hub genes, significant genes, and key genes) obtained in
the present study, we found that the SVM result was bet-
ter for the key genes than the others. In other words, the
key genes could better distinguish between the aCRSwNP
group and normal control group, implying that the key
genes could better characterize the disease of aCRSwNP
than the others. The key genes were identified by taking
the intersection of the DEGs and the hub genes contained
in the MIN. There were 14 key genes which were: CD6, IL2RA,
CSF3R, PTPRC, ARRB2, SELL, IL6R, ITGB2, CD3E, CD1A, CD1C,
CD1E, HLA-DMB, and ADRBK2.

Further to disclose the relationship of these genes with
aCRSwNP, we discussed some of these genes in relation to
the disease. For example in the case of gene IL6R, known
as human interleukin-6 (IL-6), it is a very important proin-
flammatory cytokine that plays a critical role in the in-
flammatory response. It has been indicated that IL-6 is
implicated in lots of diseases under a series of inflamma-
tory conditions, such as cardiovascular disease, inflamma-
tory arthritis, and inflammatory bowel disease (29-31). Re-
search to elevate IL-6 and sIL-6R has indicated that IL-6
plays a pathogenic role during the progress of chronic rhi-
nosinusitis (CRS). Also, the expression of IL-6 in CRS has
been demonstrated to be increased via applying the RT-
PCR methods and immunohistochemistry techniques (32,
33). Meanwhile, it has been shown by comparing the mid-
dle turbinate with CRSwNP that the level of IL-6 protein in
polyp tissue was higher (34, 35). Moreover, IL6R has been
identified as a new locus with a genome-wide significant
association with asthma risk by Ferreira et al. (36). In the
present study, by integrating the DEGs, pathways, and net-
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Figure 2. Mutual Information Network (MIN) Analysis on the Key Genes and Pathway Genes

There were 343 genes and 2872 interactions in the network, where nodes represented genes, and edges were the interactions between two genes. The yellow nodes stood for
14 key genes: CD6, IL2RA, CSF3R, PTPRC, ARRB2, SELL, IL6R, ITGB2, CD3E, CD1A, CD1C, CD1E, HLA-DMB, ADRBK2, which were identified via taking the intersection of the hub genes
and the DEGs.
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Figure 3. The Receiver Operating Characteristic (ROC) Curve of the Key Genes, Sig-
nificant Genes and DEGs, Pathway Genes and the Hub Genes

work analysis, we identified that gene IL6R was one of the
14 key genes for aCRSwNP. Based on the abovementioned
data reported in literature, we inferred that there was a
close relationship between gene IL6R and aCRSwNP.

In addition, some other key genes were also identi-
fied to be key genes for aCRSwNP based on the analytical
method used in the research. However, there was no di-
rect relationship between these genes and aCRSwNP ac-
cording to literature. However, there were still some rel-
evance between these genes and aCRSwNP. In the case of
gene IL2RA for another example, it has been reported that
the T cells produce two distinct surface receptors for inter-
leukin 2 (IL2). One of them is IL2RA that is released into pe-
ripheral blood following T cell activation (37). Bachert and
colleagues indicated that lymphoid follicle-like structures
including B cells, T cells, and plasma cells were associated
with CRSwNP (38). In this case, we inferred that there might
be some relationships between gene IL6R and aCRSwNP al-
though this hypothesis needs further experimental analy-
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Table 2. The Support Vector Machine (SVM) Results of the Five Types of the Genes in the Present Study

Genotype AUC Accuracy MCC Specificity Sensitivity Youden’s Index

DEGs 0.94 89 0.85 1 0.83 0.83

Pathway genes 0.89 79 0.58 0.83 0.75 0.58

Hub genes 0.89 93 0.83 1 0.84 0.84

Significant genes 0.94 93 0.87 1 0.88 0.88

Key genes 0.94 95 0.96 1 0.92 0.92

ses to be validated.

5.1. Limitations and Conclusions

This was the first study analyzing aCRSwNP based on in-
tegrating pathways, DEGs, and MINs. We successfully iden-
tified 14 key genes that might play key roles in the occur-
rence and development of aCRSwNP. However, there were
still several limitations in our work that must be taken
into account. For example, all of the data were obtained
from databases, and these data might be unstable. Also,
the sample size was not enough and the results obtained
by bioinformatics method were not verified via animal ex-
periments. In spite of disadvantages, we believe that this
method and the predicted key genes provide investiga-
tors with valuable resources to not only better understand
the mechanisms of aCRSwNP, but also to detect potential
biomarkers for early diagnosis and therapy of aCRSwNP.
Moreover, this method of analysis might be employed in
other related analyses.

In a word, our research identified several key genes
(such as IL6R), which might play key roles in the occur-
rence and development of aCRSwNP. These genes might
provide additional diagnostic and therapeutic targets for
aCRSwNP.
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