Risk Factors Associated with Prognosis in Patients with Acute Stroke: A Retrospective Observational Study


IV-tPA, Prognosis
Risk Factors

How to Cite

Faraji, F., Mohaghegh, P. ., Rafiee Ravand, H., & Javaheri, J. (2020). Risk Factors Associated with Prognosis in Patients with Acute Stroke: A Retrospective Observational Study. Iranian Red Crescent Medical Journal, 22(12). https://doi.org/10.32592/ircmj.2020.22.12.203


Background: Stroke is one of the major causes of disability and mortality in Iran. Therefore, it is of critical importance to know the factors affecting the effective management of acute stroke for better prevention and treatment of stroke.

Objectives: The present study aims at investigating the risk factors associated with prognosis in patients with acute stroke who were registered in the "724" stroke management registry system at Amir Al-Momenin Hospital, Arak, Iran.

Methods: This retrospective observational study included all acute stroke patients who were registered in the "724" stroke management registry system at Amir Al-Momenin Hospital, Arak, Iran, from April 2017 to April 2019. Data were analyzed in SPSS software (version 23) through the Chi-square test, Fisher's exact test, Mann Whitney U test, and logistic regression.

Results: This study investigated 139 patients with acute stroke registered in the "724" stroke management registry system at Amir Al-Momenin Hospital, Arak, Iran, from April 2017 to April 2019. The mean age of the patients was 62.91±13.31 years, and the majority of the cases were male (n=77; 55.4 %). Totally, 104 (75.4%) and 31 (22.3%) patients had hypertension and diabetes, respectively. In-hospital mortality showed a statistically significant relationship with a history of stroke, brain computed tomography scan results and high National Institutes of Health Stroke Scale (NIHSS) at baseline (P<0.05).

Conclusions: High rate of hypertension among stroke patients highlights its significance as an important modifiable risk factor for stroke. Attention to these risk factors is essential for the primary prevention of stroke. History of stroke and NIHSS score at baseline≥8 associated with poor outcome at discharge.



  1. Mestriner RG, Miguel PM, Bagatini PB, Saur L, Boisserand LSB, Baptista PPA, et al. Behavior outcome after ischemic and hemorrhagic stroke, with similar brain damage, in rats. Behav Brain Res. 2013; 244:82-9. doi: 10.1016/j.bbr.2013.02.001. [PubMed: 23403282].
  2. Matsumoto S, Murozono M, Kanazawa M, Nara T, Ozawa T, Watanabe Y. Edaravone and cyclosporine A as neuroprotective agents for acute ischemic stroke. Acute Med Surg. 2018;5(3):213-21. doi: 10.1002/ams2.343. [PubMed: 29988669].
  3. Siesjö BK, Elmer E, Janelidze S, Keep M, Kristian T, Ouyang YB, et al. Role and mechanisms of secondary mitochondrial failure. Acta Neurochir Suppl. 1999;73:7-13. doi: 10.1007/978-3-7091-6391-7_2. [PubMed: 10494335].
  4. Radak D, Resanovic I, Isenovic ER. Link between oxidative stress and acute brain ischemia. Angiology. 2014;65(8):667-76. doi: 10.1177/0003319713506516. [PubMed: 24132856].
  5. Margaill I, Plotkine M, Lerouet D. Antioxidant strategies in the treatment of stroke. Free Radic Biol and Med. 2005;39(4):429-43. doi: 10.1016/j.freeradbiomed.2005.05.003. [PubMed: 16043015].
  6. Jamal A, Javed K, Aslam M, Jafri MA. Gastroprotective effect of cardamom, Elettaria cardamomum Maton. fruits in rats. J Ethnopharmacol. 2006;103(2):149-53. doi: 10.1016/j.jep.2005.07.016. [PubMed: 16298093].
  7. Masoumi-Ardakani Y, Mandegary A, Esmaeilpour K, Najafipour H, Sharififar F, Pakravanan M, et al. Chemical composition, anticonvulsant activity, and toxicity of essential oil and methanolic extract of Elettaria cardamomum. Planta Med. 2016;82(17):1482-6. doi: 10.1055/s-0042-106971. [PubMed: 27433883].
  8. Mahmud S. Composition of essential oil of Elettaria cardamomum Maton leaves. Pakistan J Sci. 2008;60:111–4.
  9. Santos F, Rao V. Antiinflammatory and antinociceptive effects of 1, 8‐cineole a terpenoid oxide present in many plant essential oils. Phytother Res. 2000;14(4):240-4. doi: 10.1002/1099-1573(200006)14:4<240::aid-ptr573>3.0.co;2-x. [PubMed: 10861965].
  10. Ahmadvand H, Amiri H, Dalvand H, Bagheri S. Various antioxidant properties of essential oil and hydroalcoholic extract of Artemisapersica.J Birjand Univ Med Sci. 2014;20(4):416–24.
  11. Nakashima M, Niwa M, Iwai T, Uematsu T. Involvement of free radicals in cerebral vascular reperfusion injury evaluated in a transient focal cerebral ischemia model of rat. Free Radic Biol Med. 1999;26(5-6):722-9. doi: 10.1016/s0891-5849(98)00257-3. [PubMed: 10218662].
  12. Sadeek EA, El-Razek FH. The chemo-protective effect of turmeric, chili, cloves and cardamom on correcting iron overload-induced liver injury, oxidative stress and serum lipid profile in rat models. J am Sci. 2010;6(10):7.
  13. Singh G, Kiran S, Marimuthu P, Isidorov V, Vinogorova V. Antioxidant and antimicrobial activities of essential oil and various oleoresins of Elettaria cardamomum (seeds and pods). J Sci Food Agricul. 2008;88(2):280-9. doi: 10.1002/jsfa.3087.
  14. Saeed A, Sultana B, Anwar F, Mushtaq M, Alkharfy KM, Gilani A-H. Antioxidant and antimutagenic potential of seeds and pods of green cardamom (Elettaria cardamomum). Int J Pharmacol. 2014;10:461-9.
  15. Ciftci O, Ozdemir I, Tanyildizi S, Yildiz S, Oguzturk H. Antioxidative effects of curcumin, β-myrcene and 1,8-cineole against 2,3,7, 8-tetrachlorodibenzo-p-dioxin-induced oxidative stress in rats liver. Toxicol Ind Health. 2011;27(5):447-53. doi: 10.1177/0748233710388452. [PubMed: 21245202].
  16. Lerouet D, Beray-Berthat V, Palmier B, Plotkine M, Margaill I. Changes in oxidative stress, iNOS activity and neutrophil infiltration in severe transient focal cerebral ischemia in rats. Brain Res. 2002;958(1):166-75. doi: 10.1016/s0006-8993(02)03685-5. [PubMed: 12468042].
  17. Satou T, Takahashi M, Kasuya H, Murakami S, Hayashi S, Sadamoto K, et al. Organ accumulation in mice after inhalation of single or mixed essential oil compounds. Phytother Res. 2013;27(2):306-11. doi: 10.1002/ptr.4723. [PubMed: 22581512].
  18. Ryu S, Park H, Seol GH, Choi IY. 1,8‐C ineole ameliorates oxygen‐glucose deprivation/reoxygenation‐induced ischaemic injury by reducing oxidative stress in rat cortical neuron/glia. J Pharm Pharmacol.2014;66(12):1818-26. doi: 10.1111/jphp.12295.
  19. Juergens UR, Stöber M, Vetter H. Inhibition of cytokine production and arachidonic acid metabolism by eucalyptol (1.8-cineole) in human blood monocytes in vitro. Eur J Med Res. 1998;3:508-10. [PubMed: 9810029].
  20. Linghu K, Lin D, Yang H, Xu Y, Zhang Y, Tao L, et al. Ameliorating effects of 1, 8-cineole on LPS-induced human umbilical vein endothelial cell injury by suppressing NF-κB signaling in vitro. Eur J Pharmacol. 2016;789:195-201. doi: 10.1016/j.ejphar.2016.07.039. [PubMed: 27455900].
  21. Chou ST, Peng HY, Hsu JC, Lin CC, Shih Y. Achillea millefolium L. essential oil inhibits LPS-induced oxidative stress and nitric oxide production in RAW 264.7 macrophages. Int J Mol Sci. 2013;14(7):12978-93. doi: 10.3390/ijms140712978. [PubMed: 23797659].
  22. Chen AQ, Fang Z, Chen XL, Yang S, Zhou YF, Mao L, et al. Microglia-derived TNF-α mediates endothelial necroptosis aggravating blood brain–barrier disruption after ischemic stroke. Cell Death Dis. 2019;10(7):1-18. doi: 10.1038/s41419-019-1716-9. [PubMed: 31221990].
  23. Lee JH, Park SY, Shin YW, Hong KW, Kim CD, Sung SM, et al. Neuroprotection by cilostazol, a phosphodiesterase type 3 inhibitor, against apoptotic white matter changes in rat after chronic cerebral hypoperfusion. Brain Res. 2006;082(1):182-91. doi: 10.1016/j.brainres.2006.01.088. [PubMed: 16516167].
  24. Mattson MP, Duan W, Pedersen W, Culmsee C. Neurodegenerative disorders and ischemic brain diseases. Apoptosis. 2001;6(1-2):69-81. doi: 10.1023/a:1009676112184. [PubMed: 11321043].
  25. Kowaltowski AJ, Castilho RF, Vercesi AE. Mitochondrial permeability transition and oxidative stress. FEBS lett. 2001;495(1-2):12-5. doi: 10.1016/S0014-5793(01)02316-X.
  26. Li P, Nijhawan D, Budihardjo I, Srinivasula SM, Ahmad M, Alnemri ES, et al. Cytochrome c and dATP-dependent formation of Apaf-1/caspase-9 complex initiates an apoptotic protease cascade. Cell. 1997;91(4):479-89. doi: 10.1016/s0092-8674(00)80434-1. [PubMed: 9390557].