Effects of N-Acetyl Cysteine on the Expression of Matrix Metalloproteinases 2 and 9 in the Lung Tissue of Rats Exposed to Cadmium
PDF
HTML

Keywords

Cadmium
MMP2
MMP9
N-Acetyl cysteine
Rat

How to Cite

Shirinsokhan, A., Khazaei Koohpar, Z., Ranji, N., & safari, F. . (2020). Effects of N-Acetyl Cysteine on the Expression of Matrix Metalloproteinases 2 and 9 in the Lung Tissue of Rats Exposed to Cadmium. Iranian Red Crescent Medical Journal, 22(11). https://doi.org/10.32592/ircmj.2020.22.11.163

Abstract

Background: Cadmium (Cd) is a natural and heavy metal, which is widely widespread in the atmosphere. Studies report that environmental exposure to Cd increases the risk of various disorders, such as pulmonary diseases. On the other hand, Cd increases the reactive oxygen species (ROS), which interacts with biomolecules (e.g. DNA, proteins, and lipids) and causes severe damages. In addition, Cd may play a role in the dysregulation of the expression and activity of matrix metalloproteinases (MMPs). Since ROS and oxidative stress are likely the main reasons for MMPs dysregulation, antioxidants therapy may protect tissues against Cd-induced damages. Furthermore, N-acetylcysteine (NAC) protects cells against oxidative stress and toxic compounds.

Objectives: This study aimed to investigate the effect of cadmium (Cd) on the matrix metalloproteinases (MMPs) -2 and -9 expression in the lung, and the role of N-acetylcysteine (NAC) in preserving the lung cells against Cd toxicity.

Methods: The rats were randomly divided into five groups of G1 (control), G2 (single dose of Cd), G3 (continuous dose of Cd), G4 (single dose of Cd+NAC), and G5 (continuous dose of Cd+NAC). The level of Cd in the blood and lung tissue was measured by atomic absorption spectroscopy. Moreover, the expression of MMP2 and MMP9 genes was evaluated using RT-PCR.

Results: Single and continuous exposure to Cd caused a significant increase in serum and the lung tissue of Cd in G2 (0.23±0.04 mg/L and 0.35±0.047 μg/g tissue) and G3 (0.50±0.068 mg/L and 0.81±0.063 μg/g tissue) groups, compared to other groups (P<0.001). The NAC supplementation significantly decreased Cd levels in the serum and lung tissue samples of rats exposed to single or continuous Cd (P<0.001). Furthermore, exposure to a single and continuous dose of Cd caused a significant increase in the MMP2 expression by 3.24-fold (P=0.003) and 11.9-fold (P<0.001), respectively. Additionally, treatment with single and continuous dose treatment of Cd led to a significant increase in the MMP9 expression by 3.20-fold (P=0.004) and 7.54-fold (P<0.001), respectively. The NAC treatments decreased the expression of MMP2 and MMP9 in the lung of rats exposed to a single or continuous dose of Cd.

Conclusion: The Cd exposure was strongly associated with the accumulation of Cd and overexpression of MMP2 and MMP9 in the lung tissue. Moreover, the NAC can protect the lungs against Cd toxicity by decreasing Cd and down-regulating MMPs.

 

https://doi.org/10.32592/ircmj.2020.22.11.163
PDF
HTML

References

  1. Da Silva RF, Borges CD, Villela e Silva P, Missassi G, Kiguti LR, Pupo AS, et al. The coadministration of N-acetylcysteine ameliorates the effects of arsenic trioxide on the male mouse genital system. Oxid med cell longev. 2016;2016:4257498. doi: 10.1155/2016/4257498. [PubMed: 26839632].
  2. Xu Z, Wang Z, Li JJ, Chen C, Zhang PC, Dong L, et al. Protective effects of selenium on oxidative damage and oxidative stress related gene expression in rat liver under chronic poisoning of arsenic. Food Chem Toxicol . 2013;58:1-7. doi: 10.1016/j.fct.2013.03.048. [PubMed: 23603382].
  3. Lin J, Zhu H, Li S, Fan H, Lu X. Complete remission of acute promyelocytic leukemia in a very elderly patient after treatment with low dose arsenic trioxide and sequential retinoic acid: a case report. Ann Hematol. 2014;93(2):335-6. doi: 10.1007/s00277-013-1791-4. [PubMed: 23719691].
  4. Wu HE, Abdel-Gawad NM, Gharbaoui Y, Teixeira AL, Pigott TA. An unusual case of acute psychosis with obsessive-compulsive features following arsenic poisoning. J Psychiatr Pract. 2017;23(5):382-5. doi: 10.1097/PRA.0000000000000254. [PubMed: 28961669].
  5. Sun X, Li J, Zhao H, Wang Y, Liu J, Shao Y, et al. Synergistic effect of copper and arsenic upon oxidative stress, inflammation and autophagy alterations in brain tissues of Gallus gallus. J Inorg Biochem. 2017;178:54-62. doi: 10.1016/j.jinorgbio.2017.10.006. [PubMed: 29054015].
  6. Ratnaike RN. Acute and chronic arsenic toxicity. Postgrad Med J. 2003;79(933):391-6. doi: 10.1136/pmj.79.933.391. [PubMed: 12897217].
  7. Chunhabundit R. Cadmium exposure and potential health risk from foods in contaminated area, Thailand. Toxicol Res. 2016;32:65–72. doi: 10.5487/TR.2016.32.1.065. [PubMed: 26977260].
  8. Godt J, Scheidig F, Grosse-Siestrup C, Esche V, Brandenburg P, Reich A, et al. The toxicity of cadmium and resulting hazards for human health. J Occup Med Toxicol. 2006;1:22. doi: 10.1186/1745-6673-1-22. [PubMed: 16961932].
  9. Singh AP, Goel RK, Kaur T. Mechanisms pertaining to arsenic toxicity. Toxicol Int. 2011;18(2):87-93. doi: 10.4103/0971-6580.84258. [PubMed: 21976811].
  10. Filipic M, Fatur T, Vudrag M. Molecular mechanisms of cadmium induced mutagenicity. Hum Exp Toxicol. 2006;25:67-77. doi: 10.1191/0960327106ht590oa. [PubMed: 16539211].
  11. Jomova K, Jenisova Z, Feszterova M, Baros S, Liska J, Hudecova D, et al. Arsenic: toxicity, oxidative stress and human disease. J Appl Toxicol. 2011;31(2):95-107. doi: 10.1002/jat.1649. [PubMed: 21321970].
  12. Fujino Y, Guo X, Liu J, Matthews IP, Shirane K, Wu K, et al. Chronic arsenic exposure and urinary 8-hydroxy-2'-deoxyguanosine in an arsenic-affected area in Inner Mongolia, China. J Expo Anal Environ Epidemiol. 2005;15(2):147-52.
  13. Yamauchi H, Aminaka Y, Yoshida K, Sun G, Pi J, Waalkes MP. Evaluation of DNA damage in patients with arsenic poisoning: urinary 8-hydroxydeoxyguanine. Toxicol Appl Pharmacol. 2004;198(3):291-6. doi: 10.1016/j.taap.2003.10.021. [PubMed: 15276408].
  14. Shi H, Hudson LG, Ding W, Wang S, Cooper KL, Liu S, et al. Arsenite causes DNA damage in keratinocytes via generation of hydroxyl radicals. Chem Res toxicol. 2004;17(7):871-8. doi: 10.1021/tx049939e. [PubMed: 15257611].
  15. Liu SX, Athar M, Lippai I, Waldren C, Hei TK. Induction of oxyradicals by arsenic: implication for mechanism of genotoxicity. Proc Natl Acad Sci U S A. 2001;98(4):1643-8. doi: 10.1073/pnas.031482998. [PubMed: 11172004].
  16. Pi J, Yamauchi H, Kumagai Y, Sun G, Yoshida T, Aikawa H, et al. Evidence for induction of oxidative stress caused by chronic exposure of Chinese residents to arsenic contained in drinking water. Environ Health Perspect. 2002;110(4):331-6. doi: 10.1289/ehp.02110331. [PubMed: 11940449].
  17. Wu MM, Chiou HY, Wang TW, Hsueh YM, Wang IH, Chen CJ, et al. Association of blood arsenic levels with increased reactive oxidants and decreased antioxidant capacity in a human population of northeastern Taiwan. Environ Health Perspect. 2001;109(10):1011-7. doi: 10.1289/ehp.011091011. [PubMed: 11675266].
  18. Liu J, Qu W, Kadiiska MB. Role of oxidative stress in cadmium toxicity and carcinogenesis. Toxicol Appl Pharmacol. 2009;238:209-14. doi: 10.1016/j.taap.2009.01.029. [PubMed: 19236887].
  19. Das N, Paul S, Chatterjee D, Banerjee N, Majumder NS, Sarma N, et al. Arsenic exposure through drinking water increases the risk of liver and cardiovascular diseases in the population of West Bengal, India. BMC Public Health. 2012;12:639. doi: 10.1186/1471-2458-12-639. [PubMed: 22883023].
  20. Fomenko O, Shiyntum H, Shaulska O, Shevtsova A, Ushakova G. Effects of cadmium on the activity of matrix metalloproteinases and metallothionein level in the rat brain. Neurophysiol. 2017;49:154–7.
  21. 21[WU1] . Fomenko O, Shiyntum H, Shaulska O, Shevtsova A, Ushakova G. Effects of Cadmium on the Activity of Matrix Metalloproteinases and Metallothionein Level in the Rat Brain. Neurophysiol. 2017;49:154–7.
  22. Sorsa T, Tjaderhane L, Salo T. Matrix metalloproteinases (MMPs) in oral diseases. Oral Dis. 2004;10(6):311-8. doi: 10.1111/j.1601-0825.2004.01038.x. [PubMed: 15533204].
  23. Jablonska-Trypuc A, Matejczyk M, Rosochacki S. Matrix metalloproteinases (MMPs), the main extracellular matrix (ECM) enzymes in collagen degradation, as a target for anticancer drugs. J Enzyme Inhib Med Chem. 2016;31(sup1):177-83. doi: 10.3109/14756366.2016.1161620. [PubMed: 27028474].
  24. Nagase H, Visse R, Murphy G. Structure and function of matrix metalloproteinases and TIMPs. Cardiovasc Res. 2006;69(3):562-73. doi: 10.1016/j.cardiores.2005.12.002. [PubMed: 16405877].
  25. Lu L, Zhang Q, Pu LJ, Peng WH, Yan XX, Wang LJ, et al. Dysregulation of matrix metalloproteinases and their tissue inhibitors is related to abnormality of left ventricular geometry and function in streptozotocin-induced diabetic minipigs. Int J Exp Pathol. 2008;89(2):125-37. doi: 10.1111/j.1365-2613.2008.00579.x. [PubMed: 18336530].
  26. Lacorte LM, Rinaldi JC, Justulin LA Jr, Delella FK, Moroz A, Felisbino SL. Cadmium exposure inhibits MMP2 and MMP9 activities in the prostate and testis. Biochem Biophys Res Commun. 2015;457:538-41. doi: 10.1016/j.bbrc.2015.01.019. [PubMed: 25600809].
  27. Kerksick C, Willoughby D. The antioxidant role of glutathione and N-acetyl-cysteine supplements and exercise-induced oxidative stress. J Int Soc Sports Nutr. 2005;2(2):38-44. doi: 10.1186/1550-2783-2-2-38. [PubMed: 18500954].
  28. Dekhuijzen PNR. Antioxidant properties of N-acetylcysteine: their relevance in relation to chronic obstructive pulmonary disease. Eur Respir J. 2004;23(4):629-36. doi: 10.1183/09031936.04.00016804. [PubMed: 15083766].
  29. Gao S, Duan X, Wang X, Dong D, Liu D, Li X, et al. Curcumin attenuates arsenic-induced hepatic injuries and oxidative stress in experimental mice through activation of Nrf2 pathway, promotion of arsenic methylation and urinary excretion. Food Chem Toxicol . 2013;59:739-47. doi: 10.1016/j.fct.2013.07.032. [PubMed: 23871787].
  30. Sankar P, Telang AG, Kalaivanan R, Karunakaran V, Suresh S, Kesavan M. Oral nanoparticulate curcumin combating arsenic-induced oxidative damage in kidney and brain of rats. Toxicol Ind Health. 2016;32(3):410-21. doi: 10.1177/0748233713498455. [PubMed: 24105067].
  31. Reddy PS, Rani GP, Sainath SB, Meena R, Supriya C. Protective effects of N-acetylcysteine against arsenic-induced oxidative stress and reprotoxicity in male mice. J Trace Elem Med Biol. 2011;25(4):247-53. doi: 10.1016/j.jtemb.2011.08.145. [PubMed: 21924885].
  32. Biswas J, Sinha D, Mukherjee S, Roy S, Siddiqi M, Roy M. Curcumin protects DNA damage in a chronically arsenic-exposed population of West Bengal. Human Exp Toxicol. 2010;29(6):513-24. doi: 10.1177/0960327109359020. [PubMed: 20056736].
  33. Martin DS, Willis SE, Cline DM. N-acetylcysteine in the treatment of human arsenic poisoning. J Am Board Fam Pract. 1990;3(4):293-6. [PubMed: 2248097].
  34. Ma Z, Chu L, Liu H, Wang W, Li J, Yao W, et al. Beneficial effects of paeoniflorin on non-alcoholic fatty liver disease induced by high-fat diet in rats. Sci Rep. 2017;7:44819. doi: 10.1038/srep44819. [PubMed: 28300221].
  35. Yaghooti H, Firoozrai M, Khorramizadeh MR. Acute cadmium exposure augments MMP-9 secretion and disturbs MMP-9/TIMP-1 balance. Asian Biomed. 2012;6(3):445-51. doi: 10.5372/1905-7415.0603.075.
  36. Prozialeck WC, Lamar PC, Edwards JR. Effects of sub-chronic Cd exposureon levels of copper, selenium, zinc, iron and other essential metals in rat renal cortex. Toxicol Rep. 2016;3:740–6. doi: 10.1016/j.toxrep.2016.09.005. [PubMed: 28959600].
  37. Yamano T, DeCicco LA, Rikans LE. Attenuation of cadmium induced liver injury in senescent male fischer 344 rats: role of Kupffer cells and inflammatory cytokines. Toxicol Appl Pharmacol. 2000;162:68-75. doi: 10.1006/taap.1999.8833. [PubMed: 10631129].
  38. Sarkar S, Yong VW. Inflammatory cytokine modulation of matrix metalloproteinase expression and invasiveness of glioma cells in a 3-dimensional collagen matrix. J Neurooncol. 2009;91(2):157-64. doi: 10.1007/s11060-008-9695-1. [PubMed: 18802741].
  39. Jahanbazi Jahan-Abad A, Morteza-Zadeh P, Sahab Negah S, Gorji A. Curcumin attenuates harmful effects of arsenic on neural stem/progenitor cells. Avicenna J Phytomed. 2017;7(4):376-88. [PubMed: 28884087].
  40. Tiwari H, Rao MV. Curcumin supplementation protects from genotoxic effects of arsenic and fluoride. Food Chem Toxicol. 2010;48(5):1234-8. doi: 10.1016/j.fct.2010.02.015. [PubMed: 20170701].
  41. Yadav RS, Sankhwar ML, Shukla RK, Chandra R, Pant AB, Islam F, et al. Attenuation of arsenic neurotoxicity by curcumin in rats. Toxicol Appl Pharmacol. 2009;240(3):367-76. doi: 10.1016/j.taap.2009.07.017. [PubMed: 19631675].
  42. Han YH, Kim SZ, Kim SH, Park WH. Suppression of arsenic trioxide-induced apoptosis in HeLa cells by N-acetylcysteine. Mol Cells. 2008;26(1):18-25. [PubMed: 18511884].
  43. Santra A, Chowdhury A, Ghatak S, Biswas A, Dhali GK. Arsenic induces apoptosis in mouse liver is mitochondria dependent and is abrogated by N-acetylcysteine. Toxicol Appl Pharmacol. 2007;220(2):146-55. doi: 10.1016/j.taap.2006.12.029. [PubMed: 17303202].
  44. Sankar P, Gopal Telang A, Kalaivanan R, Karunakaran V, Manikam K, Sarkar SN. Effects of nanoparticle -encapsulated curcumin on arsenic-induced liver toxicity in rats. Environ Toxicol. 2015;30(6):628-37. doi: 10.1002/tox.21940.