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Abstract

Background: Pathway analysis is the first choice for gaining insight into the underlying biology of disease, as it reduces complexity
and increases explanatory power.
Objectives: The purpose of our paper was to investigate dysregulated pathways between ankylosing spondylitis (AS) patients as
well as normal controls based on the pathway interaction network (PIN) related analysis.
Methods: This is a case-control bioinformatics analysis using already published microarray data of AS. It was conducted in Kun-
ming, China from October 2015 to June 2016. We recruited the gene expression profile of AS from the ArrayExpress database
(http://www.ebi.ac.uk/arrayexpress/) with the accessing number of E-GEOD-25101. E-GEOD-25101 existed on A-MEXP-1171 - Illumina
HumanHT-12 v3.0 Expression BeadChip Platform and was comprised of 32 samples (16 AS samples and 16 normal samples). Mean-
while, the protein-protein interaction (PPI) data and pathway data were retrieved from Search Tool for the retrieval of interacting
genes/proteins (STRING, http://string-db.org/) as well as Reactome databases, respectively. Furthermore, according to the principal
component analysis (PCA) method, the seed pathway was selected by computing the activity score for each pathway. A PIN was con-
structed dependent on the data and Pearson correlation coefficient (PCC). Dysregulated pathways were captured from the PIN by
utilizing the seed pathway and the area under the receiver operating characteristics curve (AUROC) index.
Results: The PIN consisted of 1022 pathways and 7314 interactions, of which, 3’-UTR-mediated translational regulation was the seed
pathway (absolute change of activity score = 10.962). Starting from the seed pathway, a minimum set of pathways with AUROC =
0.902 was extracted from the PIN. Consequently, a total of 11 dysregulated pathways were identified for AS compared with normal
controls, such as L13a-mediated translational silencing of Ceruloplasmin expression, GTP hydrolysis, as well as joining of the 60S
ribosomal subunit.
Conclusions: These results might be available to provide potential biomarkers to diagnose AS as well as give a hand to reveal patho-
logical mechanism of this disease.
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1. Background

Ankylosing spondylitis (AS), an immune-mediated
arthritis, is the prototypic member of a group of con-
ditions known as spondyloarthropathies, which also in-
cludes reactive arthritis, psoriatic arthritis, and entero-
pathic arthritis (1). Several features such as synovitis, chon-
droid metaplasia, cartilage destruction, and subchondral
bone marrow changes are commonly found in the joints of
AS patients (2). Due to the complex progression of the joint
remodeling process, clinical researches do not systemati-
cally evaluate histopathologic changes (3) and no clear se-
quence of the pathological mechanism can yet be drawn
from AS. Therefore, it is understandable that major efforts

have been done for dissecting the potential mechanisms
underlying AS.

With the advances of high-throughput technologies,
it has been widely applied to explore diagnostic signa-
tures, provide novel insights into the underlying molecu-
lar mechanisms, and shed new lights on the aetiopatho-
genesis of human diseases (4). Currently, rapid progress
has been made in discovering genetic associations with AS
(5-7). For instance, it had been reported that approximately
90% of AS patients expressed the major histocompatibil-
ity complex, class I, B27 (HLA-B27) (6). Furthermore, Lin et
al. (7) investigated the pathophysiological significance of
Interleukin (IL)-27 and vascular endothelial growth factor
(VEGF) in AS. However, the exact mechanism of AS is still
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unclear and is needed to urgently be disclosed and uncov-
ered.

Generally speaking, genes are not only encoded as in-
dividual genes or proteins, but also interacted with oth-
ers to form interactions (8). Moreover, approximate genes
and interactions may play similar functions and are en-
riched in a biological pathway (9). Pathway analysis has be-
come the first choice for gaining insight into the underly-
ing biology of genes and proteins, as it reduces complex-
ity and has increased explanatory power (10). Altered path-
ways give insights to the molecular targets and therefore,
researchers have paid more attention to this concept. For
example, Wnt pathway was revealed to play a critical con-
tributing role in the unique pathology and bony fusion in
AS (11). Considering the complicated nature of biological
systems, more than 1 pathway might be involved in a given
complex disease and the deregulation of 1 pathway may af-
fect the activities of many related pathways (12). It is possi-
ble to detect more reliable pathway biomarkers by taking
into account the functional dependency or interaction be-
tween pathways, that is to say, the pathway interaction net-
work (PIN).

Therefore, in the current study, we constructed a PIN
and utilized it to identify dysregulated pathways between
AS patients and normal controls. Specifically, after the
genes were aligned to the pathways, we utilized the prin-
cipal component analysis (PCA) method to compute the
pathway activity for each pathway relying on the summary
of the expression values of all genes in this given path-
way, and selected the seed pathway. After, the PIN was con-
structed with each node representing a biological path-
way based on gene expression data, protein-protein inter-
actions (PPIs) data, and pathway data. Eventually, dysregu-
lated pathways were extracted from the PIN utilizing seed
pathway and the area under the receiver operating charac-
teristics curve (AUROC) index.

2. Methods

2.1. Preparing Datasets

2.1.1. Gene Expression Data

This study is a case-control bioinformatics analysis
using already published microarray data of ankylosing
spondylitis. A gene expression dataset of AS with the ac-
cessing number E-GEOD-25101 was collected from the Ar-
rayExpress database (http://www.ebi.ac.uk/arrayexpress/).
E-GEOD-25101 existed on A-MEXP-1171 - Illumina HumanHT-
12 v3.0 Expression BeadChip Platform and was comprised
of 32 samples (16 ankylosing spondylitis samples and 16
normal samples). For the purpose of improving the qual-
ity of the data, standard pre-treatments were conducted,

including robust multi-array average (RMA) algorithm for
background correction (13), quantiles algorithm for nor-
malization (14), micro array suite (MAS) algorithm to re-
vise the perfect match and mismatch (15), and median-
polish method for summarization of all expression values
(13). Based on the preprocessed data on the probe level, we
mapped them into a gene symbol measure, a total of 11587
genes were obtained in the gene expression data for fur-
ther exploitation.

2.1.2. PPI Data

The human PPIs on 16730 protein entries and 787896
interactions was retrieved from the search tool for the
retrieval of interacting genes/proteins (STRING) database
(16), which provides a critical assessment and integration
of PPIs, including direct (physical) as well as indirect (func-
tional) associations, and is widely used in various studies
(17). Subsequently, in order to make these PPIs more reli-
able and correlated to AS, we discarded interactions with a
score < 0.2. Note that the score was the inherent score of an
interaction in the STRING database. Furthermore, the re-
served interactions were integrated with the gene expres-
sion data to take their intersections. Ultimately, 266199 in-
teractions among 9865 genes were retained and termed
with PPI data for the present study.

2.1.3. Pathway Data

All biological pathways for human beings (1675 path-
ways) were captured from a confirmed Reactome path-
way database, which is a manually curated open-source
open-data resource of human pathways and provides in-
frastructure for computation across the biologic reaction
network (18). As the same with PPI data, we also took inter-
sections between the 1675 pathways and gene expression
data. In addition, pathways with very few genes might not
have sufficient biological information and too many genes
may be too generic (19), thus, only pathways of intersected
gene amounts ranged from 5 to 100 were reserved as our
study objectives. Finally, we obtained 1022 pathways and
assigned an ID to each pathway in accordance with its al-
phabetical order.

2.2. Computing Pathway Activity

To further explore biological functions and impor-
tance for pathways in pathway data, an activity score for
each pathway was defined as the summary of the expres-
sion levels of all genes enriched in this given pathway uti-
lizing the PCA method (20). The PCA technique can ef-
fectively characterize the internal structure of the high-
dimension dataset by preserving the variance in the data
while transforming the data into low-dimension space (12).
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In short, the activity score of pathway k in sample j, Pkj, was
a linear combination of the expressions of all genes in the
pathway:

(1)Pkj = w1jkx1jk + w2jkx2jk · · ·+ wijkxijk

Where xijk stood for the standardized expression value
of gene i from pathway k in sample j, and wijk denoted
weight of xijk. Particularly, the first principal component
from PCA was defined as the activity score for the corre-
sponding pathway. Note that the activity score for 1 path-
way across disease and normal controls was different and
the difference might indicate its correlation to the disease,
the bigger of the difference, and the closer relevance of this
pathway to the disease. Thus, in the current study, the path-
way with a maximum change of activity score between dis-
ease and control groups was defined as seed pathway.

2.3. Constructing PIN

In the present work, a PIN was constructed with each
node standing for a pathway, where 1 edge was laid be-
tween 2 pathways if they shared at least 1 gene or there were
interactions between genes from the 2 pathways based on
the PPI data. In other words, edges in PIN must satisfy at
least 1 of 2 conditions. The first condition requested that
at least 1 of the common genes between 2 pathways is dif-
ferentially expressed between AS patients and normal con-
trols. Student’s t-test was applied to perform differentially
expression analyses for genes, which determines whether
2 populations express a significant or non-significant dif-
ference between population means (21). Only the genes
that met to the threshold of P < 0.05 were regarded as dif-
ferentially expressed between AS status and normal con-
trols.

The other condition required that the 2 genes that
coded a pair of interacting genes used to lay an edge be-
tween 2 pathways were highly co-expressed (absolute value
of PCC > 0.8). Importantly, PCC is one of the commonly
used measures for the strength of the association between
a pair of variables, giving a value between -1 and +1 inclusive
(22). We computed the PCC for all interactions in PPI data,
thereby gaining the distribution of PCC and also calculated
the absolute difference of PCC across AS samples and nor-
mal controls. If the edge between 2 pathways met to 1 of the
2 conditions, it would be reserved or else discarded. Mean-
while, it had been reported that a excessively big network
might neglect a certain number of significant genes and
interactions (23), thus we selected the top 5% pathways, in
descending order, of absolute value of PCC to construct the
PIN for AS.

2.4. Identifying Dysregulated Pathways

After computing the activity score for each pathway
and defining the seed pathway, we formulated the iden-
tification of dysregulated pathways as a feature selection
problem in a machine learning framework, where the min-
imum set of pathways that can best discriminate diseases
from controls were considered to be more possibly dysreg-
ulated pathways. In the feature selection, the support vec-
tor machines (SVMs) model was utilized, which is a widely
used kernel based method especially useful for a small
number of samples with high dimensional variables (24).
Concretely, starting with the seed pathway, the minimum
set of pathways search step iteratively involved pathways
whose addition led to the maximum increase in the pre-
diction accuracy pathway set until the prediction accuracy
dropped. The prediction accuracy capability or classifica-
tion performance was evaluated by AUROC index (25), and
the performance ability was tested using five-fold cross val-
idation (26). In the five-fold cross validation, all samples
were randomly divided into 5 equal-size parts, 4 of which
were employed as training set but the others were used as
test set to evaluate the classification performance. In order
to get robust results and ensure accuracy of classified per-
formance, we repeated computing AUROC 100 times when
adding a new pathway and the average was used as the fi-
nal result.

3. Results

3.1. PIN

In this work, 3 kinds of data were collected, gene ex-
pression data of 11587 genes, PPI data with 9865 genes and
266199 interactions, as well as a pathway data of 1022 path-
ways. Using the gene expression data, 2280 genes were de-
tected to be differentially expressed between AS patients
and normal control based on the Student’s t-test. When an
interaction between 2 pathways satisfied that at least 1 of
the common genes of the 2 pathways was differentially ex-
pressed, or the 2 pathways were highly co-expressed (abso-
lute difference of PCC > 0.8), it would be retained or else re-
moved. In consequence, 146286 interactions were gained.
With the purpose of reducing the intricate network, we
adopted the top 5% of all interaction to construct a PIN. The
PIN was comprised of 7314 interactions and 1022 nodes, in
which we defined the absolute value of PCC for an edge as
its score. Interestingly, we found that 11 pathway interac-
tions had the score values higher than 400, as displayed in
Table 1. A total of 10 pathways participated in the 11 inter-
actions, of which DNA replication (ID: 234) and synthesis
of DNA (ID: 890) appeared 5 times. Besides, the interaction
between mRNA Splicing (ID: 511) and mRNA Splicing - Major
Pathway (ID: 512) possessed the largest score of 456914.
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Table 1. Interactions with Score > 400 in Pathway Interaction Network (PIN)a

Rank Interaction Score

Pathway (ID) Pathway (ID)

1 511 512 456.914

2 59 234 445.106

3 234 722 445.105

4 234 890 431.017

5 59 890 418.592

6 722 890 418.590

7 234 235 409.995

8 234 464 409.945

9 235 890 409.066

10 464 890 409.065

11 366 869 403.474

aThe pathway name for ID: 511, mRNA Splicing; 512, mRNA Splicing - Major Path-
way; 59, APC/C-mediated degradation of cell cycle proteins; 234, DNA Replica-
tion; 722, Regulation of mitotic cell cycle; 890, Synthesis of DNA; 235, DNA Repli-
cation Pre-Initiation; 464, M/G1 Transition; 366, GTP hydrolysis and joining of
the 60S ribosomal subunit; 869, SRP-dependent cotranslational protein target-
ing to membrane.

3.2. Seed Pathway

To investigate the significances for pathways in path-
way data, an activity score was assigned to each pathway
according to the PCA method. As described above, we un-
covered that the activity score for certain pathway in AS
patients was different from that of normal controls. Fur-
thermore, how to overcome the inconsistent results and
set standards to assess the importance of pathways had
become a great challenge. After careful thinking, the ab-
solute change of activity score across AS and normal sam-
ples was denoted as the activity score for the pathway. The
distribution for absolute activity score changes for 1022
pathways was illustrated in Figure 1. With the increase of
the absolute change value, the number of pathways de-
creased, especially after 5829. Of note, we found that sig-
nificant change of the activity score between AS and nor-
mal groups happened in the pathway of 3’-UTR-mediated
translational regulation (Absolute change of activity score
= 10.962), which thus defined this pathway as seed path-
way.

3.3. Dysregulated Pathways

As mentioned above, 3’-UTR-mediated translational
regulation (ID: 1) was the seed pathway. Beginning with
this seed pathway, selection of dysregulated pathways was
implemented according to the classification accuracy. This
procedure stopped until classification accuracy was not in-
creased. Ultimately, a minimum set (AUROC = 0.902) of
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Figure 1. Distributions of absolute activity score changes for pathways in pathway
data. The pathway of activity score with the greatest change between ankylosing
spondylitis (AS) patients and normal controls was considered to be seed pathway.

pathways was extracted from the PIN (Figure 1), which in-
dicated that these selected dysregulated pathways could
be utilized as robust bio-signatures. As shown in Figure 2,
there were 11 dysregulated pathways that interacted with
44 interactions, in which the red node represented the
seed pathway 3’-UTR-mediated translational regulation.

4. Discussion

In this paper, we extracted the dysregulated pathways,
which were able to distinguish AS patients from normal
controls, dependent on the PIN related analysis. Conse-
quently, a PIN with 1022 nodes and 7314 interactions were
gained for the AS group. Subsequently, the seed pathway
was defined as the highest absolute change of activity score
between AS patients and normal controls though the PCA
method. Furthermore, a minimum set of pathways with
11 nodes and 44 interactions was extracted from the PIN.
As mentioned above, pathways in this set were dysregu-
lated pathways. It was reasonable and biologically inter-
pretable to denote these pathways in the set as discrimi-
native features between AS samples and normal controls.
A seed pathway that can best discriminate between the ex-
perimental group and control was firstly identified as the
first pathway biomarker. The second pathway that can be
combined with the first pathway to get better classification
results was identified from those pathways that interacted
with the first pathway in PIN (12).

In particular, 3’-UTR-mediated translational regulation
was the seed pathway. With our knowledge, the specific in-
teraction of factor (s) with the 5’ or 3’ untranslated region
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Figure 2. Interaction network of dysregulated pathways. Nodes represented path-
ways, and edges were the interaction among any two pathways. The red node was
the seed pathway. The ID verse dysregulated pathway, 1: 3’ -UTR-mediated transla-
tional regulation; 449: L13a-mediated translational silencing of Ceruloplasmin ex-
pression; 366: GTP hydrolysis and joining of the 60S ribosomal subunit; 553: non-
sense mediated decay (NMD) enhanced by the exon junction complex (EJC); 555:
nonsense-mediated decay (NMD); 1006: viral mRNA translation; 744: respiratory
electron transport, ATP synthesis by chemiosmotic coupling, and heat production
by uncoupling proteins; 960: translation initiation complex formation; 498: mito-
chondrial translation elongation; 304: formation of the ternary complex, and sub-
sequently, the 43S complex; and 496: mitochondrial protein import.

(UTR) drove transcript-selective and translational control,
thereby influencing initiation, elongation, or termination
of mRNA translation (27). Besides, translational control
provides numerous advantages in regulation of gene ex-
pression including rapid responsiveness, intracellular lo-
calization, and coordinated regulation of transcript en-
sembles (28, 29). New and unexpected mechanisms of 3’-
UTR-mediated translational regulation as well as their con-
tributions to the disease have received increasing atten-
tion during the last decade, emphasizing the novel aspects
of these regulatory mechanisms and their potential patho-
physiological significance (30). Hence, we knew that 3’-
UTR-mediated translational regulation took active partic-
ipated in various biological processes no matter in normal
or disease samples, and inferred that the dysregulation of
this pathway might be one of the possible leading causes.
It is the first time to uncover the relationship between 3’-
UTR-mediated translational regulation and AS patients.

When bringing inhibitory 3’-UTR-binding proteins into
a position in which they interfere with either the function
of the translation initiation complex or with the assem-
bly of the ribosome, the circularization of mRNA during
translation initiation contributes an increase in the effi-

ciency of translation and appears to provide a mechanism
for translational silencing (31). Translational silencing is
mediated by the L13a subunit and thought to require circu-
larization of the Ceruloplasmin (Cp) mRNA (32). Moreover,
phosphorylated L13a associates with the GAIT element in
the 3’ UTR of the Cp mRNA inhibiting its translation. Thus
L13a-mediated translational silencing of Ceruloplasmin ex-
pression co-operated with the seed pathway closely, which
validated that the feasibility of the dysregulated pathway
set.

Meanwhile, there were several limitations in this work.
The samples utilized for obtaining the microarray data
were retrieved from the public database, not from our own
department. Moreover, the work was a pure bioinformat-
ics analysis and the results were not verified by wet ex-
periments. In the paper, we have identified 11 dysregu-
lated pathways between AS patients and normal controls
based on the PIN correlated analyses. The results suggested
dysregulated pathways, especially 3’-UTR-mediated trans-
lational regulation, were important to the progression of
AS development. Furthermore, they also gave great in-
sights to reveal the pathological mechanism underlying
this disease. However, the validation of these dysregulated
pathways should be conducted as soon as possible.
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