Use of Chinese Visible Human (CVH) images to enhance interpretation of CT or MRI images: application to nasopharyngeal structures segmentation in Treatment Planning System (TPS)

Keywords

B-spline, Mutual information, Image registration fusion, Nasopharyngeal carcinoma, Treatment Planning System

Categories

How to Cite

Yang, J., Zhang, X., Luo, B., Liu, H., Xu, Z., Wang, H., Hu, X., Sun, J., Qiao, L., Zhang, S., & Wu, Y. (2022). Use of Chinese Visible Human (CVH) images to enhance interpretation of CT or MRI images: application to nasopharyngeal structures segmentation in Treatment Planning System (TPS). Iranian Red Crescent Medical Journal, 24(10). Retrieved from https://ircmj.com/index.php/IRCMJ/article/view/1472

Abstract

Background: With a leading morbidity among the malignant tumors in otorhinolaryngology, Nasopharyngeal carcinoma (NPC) is one of the most frequent malignant tumors in China.

Objective: To help radiotherapy doctors recognize and segment the nasopharyngeal organs in risk of Nasopharyngeal carcinoma (NPC) and make radiotherapy plan.

Methods: We used B-spline and mutual information to transform, register and fuse the Chinese Visible Human (CVH) images with the patient's personalized CT images, and integrated them into the Treatment Planning System (TPS). Consequently, Three-Dimensional Visualization Treatment Planning System (3DV+TPS) was created. To verify it, 3DV+TPS was deployed to identify and segment the nasopharyngeal organs in risk of NPC, and a questionnaire was filled out by radiotherapy doctors.

Results: Result shows that 3DV+TPS can finish registration and fusion of 4 sets of sectional anatomical images and individual CT images of patients in approximately 3 minutes and 50 seconds.

Conclusion: The registered and fused images can accurately reflect the position, outline and adjacent space of the nasopharyngeal structure which is not clear in the CT images. Thus, it is helpful for recognizing and segmenting neural, muscular and glandular structures. Through automatically registering and fusing of color images and CT gray images, 3DV+TPS improves the accuracy and efficiency of recognizing nasopharyngeal structures in making radiotherapy plan, and it is useful to improve the teaching quality of tumor radiotherapy for medical students and interns as well.

References

Chen W, Zheng R, Zhang S, Zhao P, Li G, Wu L, et al. Report of incidence and mortality in China cancer registries, 2009. Chin J Cancer Res. 2013;25(1):10-21. doi: 10.3978/j.issn.1000-9604.2012.12.04. [PubMed: 23372337].

Wei KR, Zheng RS, Zhang SW, Liang ZH, Li ZM, Chen WQ. Nasopharyngeal carcinoma incidence and mortality in China, 2013. Chin J Cancer. 2017;36(1):1-8. doi: 10.1186/s40880-017-0257-9. [PubMed: 29122009].

Wei KR, Zheng RS, Zhang SW, Liang ZH, Ou ZX, Chen WQ. Nasopharyngeal carcinoma incidence and mortality in china in 2010. Chin J Cancer. 2014;32(8):381-7. doi: 10.5732/cjc.014.10086. [PubMed: 25096544].

Chen WQ, Li H, Sun KX, Zheng RS, Zhang SW, Zeng HM, et al. Report of cancer incidence and mortality in China,2014. Zhonghua Zhong Liu Za Zhi. 2018;23;40(1):5-13. doi: 10.3760/cma.j.issn.0253-3766.2018.01.002. [PubMed: 29365411].

Chen W, Zheng R, Zeng H, Zhang S, He J. Annual report on status of cancer in China, 2011. Chin J Cancer Res. 2015;27(1):2-12. doi:10.3978/j.issn.1000-9604.2015.01.06. [PubMed: 25717220].

Chang ET, Adami HO. The enigmatic epidemiology of nasopharyngeal carcinoma. Cancer Epidemiol Biomarkers Prev. 2006;15(10):1765-77. doi:10.1158/1055-9965.EPI-06-0353. [PubMed: 17035381].

Lin TM, Chang HJ, Chen CJ, et al. Risk factors for nasopharyngeal carcinoma. Anticancer Res. 1986;6(4):791-6. [PubMed: 3752958].

Huang TR, Zhang SW, Chen WQ, Deng W, Zhang CY, Zhou XJ, et al. Trends in nasopharyngeal carcinoma mortality in china, 1973-2005. Asian Pac J Cancer Prev. 2012;13(6):2495-502. doi:10.7314/apjcp.2012.13.6.2495. [PubMed: 22938411].

Hashemi SM, Mahmoodi R, Amirjamshidi A. Variations in the anatomy of the Willis' circle: A 3-year cross-sectional study from Iran (2006-2009). Are the distributions of variations of circle of Willis different in different populations? Result of an anatomical study and review of literature. Surg Neuro Int. 2013;17:1-4. doi: 10.4103/2152-7806.112185. [PubMed: 23772335].

Trullo R, Petitjean C, Ruan S, Dubray B, Nie D, Shen D. Segmentation of organs at risk in thoracic ct images using a sharpmask architecture and conditional random fields. Proc IEEE Int Symp Biomed Imaging. 2017;2017:1003-6. doi: 10.1109/ISBI.2017.7950685. [PubMed: 29062466].

Han M, Ma J, Li Y, Li M, Song Y, Li Q. Segmentation of organs at risk in CT volumes of head, thorax, abdomen, and pelvis. SPIE. 2015;9413:942-7. doi: 10.1117/12.2081853.

Wang J. Research and application of nonrigid medical image registration based on B-spline and mutual information Taiyuan University of Technology. 2017.

Zhang SX, PHeng PA, Liu ZJ, Tan LW, Qiu MG, Li QY, et al. Creation of the chinese visible human data set. Anat Rec B New Anat. 2003;275(1):190-5. doi: 10.1002/ar.b.10035. [PubMed: 14628319].

Zhang SX, PHeng PA, Liu ZJ, Tan LW, Qiu MG, Li QY, et al. The chinese visible human (cvh) datasets incorporate technical and imaging advances on earlier digital humans. J Anat. 2004;204(3):165-73. doi: 10.1111/j.0021-8782.2004.00274.x. [PubMed: 15032906].

Sahoo N, Poenisch F, Zhang X, Li Y, Li MF, Li H, et al. 3d treatment planning system—varian eclipse for proton therapy planning. Med Dosim. 2018;43(2):184-94. doi: 10.1016/j.meddos.2018.03.006. [PubMed: 29753334].

Zhao LR, Zhou YB, Li GH, Li QM, Yang DQ, Li HX, et al. The clinical feasibility and performance of an orthogonal x-ray imaging system for image-guided radiotherapy in nasopharyngeal cancer patients: Comparison with cone-beam CT. Phys Med. 2016;32(1):266-71. doi: 10.1016/j.ejmp.2015.11.010. [PubMed: 26703446].

Pradhan S, Patra D. P-spline based nonrigid brain MR image registration using regional mutual information. IEEE. 2014. doi: 10.1109/INDCON.2013.6726145.

Li HM, Fan Y. Non-Rigid image registration using self-supervised fully convolutional networks without training Data. Proc IEEE Int Symp Biomed Imaging. 2018:1-4. doi: 10.48550/arXiv.1801.04012.

Zhang S, Liu Z, Liu B, Zhou F. Medical image registration by using salient phase congruency and regional mutual information. In2011 4th International Congress on Image and Signal Processing; 2011.

Xiang Y ,Gui P, Wang S. An improved medical image registration method based on the sum of conditional variance. J Biomed Engineering Research. 2018:37(1):71-6.

Zhao S, Lu XQ. Heterogeneous registration of medical images based on local mutual information and automatic update. Chin J Med Phys. 2017;4:806-10.

Zhu SD. Research on multimodal medical image registration based on feature matching. Anhui University; 2016.

Bhattacharya M, Das A. Multimodality medical image registration and fusion techniques using mutual information and genetic algorithm-based approaches. Adv Exp Med Biol. 2011;696:441-9. doi: 10.1007/978-1-4419-7046-6_44. [PubMed: 21431584].

Chen YB, Zhang HX, et al. Application of ct-mri fusion images for determining the target region in postoperative glioma. Chin J oncol prevention and treatment, 2017.

Yin F, Gao W, Song Z. Medical image fusion based on feature extraction and sparse representation. Int J Biomed Imaging. 2017;2017:1-11. doi:10.1155/2017/3020461. [PubMed: 28321246].

Liu Z, Yin H, Chai Y, Yang SX. A novel approach for multimodal medical image fusion. Expert Syst Appl. 2014;41(16):7425-35. doi:10.1016/j.eswa.2014.05.043.

Chen YB, Zhang HX, Jiang ZD, et al. Application of CT-MRI fusion images for determining the target region in postoperative glioma. Chin J of oncol prevention and treatment, 2017. doi:10.3969/j.issn.1674-5671.2017.01.12.

Yang R, Li QX, Mao C, Peng X, Wang Y, Guo YX, et al. Multimodal image fusion technology for diagnosis and treatment of the skull base-infratemporal tumors. Beijing Da Xue Xue Bao Yi Xue Ban. 2019;51(1):53-8. doi: 10.19723/j.issn.1671-167X.2019.01.010. [PubMed: 30773544].

Chuang WY, Chang SH, Yu WH, Yang CK, Yeh CJ, Ueng SH, et al. Successful identification of nasopharyngeal carcinoma in nasopharyngeal biopsies using deep learning. Cancers (Basel). 2020;12(2):1-11. doi: 10.3390/cancers12020507. [PubMed: 32098314].

Klein S, Staring M, Pluim JP. Evaluation of optimization methods for nonrigid medical image registration using mutual information and b-splines. IEEE Trans Image Process. 2007;16(12):2879-90. doi: 10.1109/tip.2007.909412. [PubMed: 18092588].

Rueckert D, Aljabar P. Non-rigid registration using free-form deformations. Handbook of Biomedical Imaging. Boston: Springer; 2015.