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Abstract

Background: The exactinteracting factor that response to the infection for neonatal sepsis is still needed to urgently to be disclosed.
Objectives: This research was aimed to explore the potential biomarkers and illuminate the underlying molecular mechanisms
associated with neonatal sepsis via identifying differential modules (DMs).

Methods: This is a case-control bioinformatics analysis using already published microarray data of neonatal sepsis. This study was
conducted in Qingdao, China from September 2015 to May 2016. We recruited the gene expression profile of neonatal sepsis from
the Array Express database (http://www.ebi.ac.uk/arrayexpress) under the accessing number of E-GEOD-25504, which included 27
neonatal samples with a confirmed blood culture-positive test for sepsis (bacterial infected cases) as well as 35 matched controls.
Meanwhile, the human protein-protein interaction (PPI) data was collected from the database of Search Tool for the Retrieval of
Interacting Genes/Proteins (STRING, http:/[string-db.org). All of the data was preprocessed. Then, the differential co-expression net-
work (DCN) was constructed by integrating co-expression analysis and differential expression analysis. Next, a systemic module
searching strategy, which contained seed genes selection, module searching and refinement of modules, was performed by select
DMs.

Results: Starting from the gene expression data and PPl data, the DCN thatincluded 430 edges (covering 324 nodes) was constructed,
in which each edge was assigned a weight value. From the DCN, we selected a total of 16 seed genes. Starting from these seed genes,
a total of 3 modules were identified from the DCN based on the systemic module algorithm. Of them, only one module (Module 3)
was considered as DM under P < 0.05. This DM was involved in the progress of ribosome biogenesis in eukaryotes.

Conclusions: In the present study, we identified a key gene RPS16 and a significant module involved in ribosome biogenesis in
eukaryotes that were related to neonatal sepsis, which might be potential biomarkers for early detection and therapy for neonatal
sepsis.
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1. Background

Neonatal sepsis, a systemic infection occurring in in-
fants at < 28 days of life (1) is a major cause of morbidity
and mortality in newborns, especially in the developing
countries (2). Even though there has been an improvement
in neonatal care in the past few years, infection remains
a leading cause of morbidity and mortality in neonates
worldwide by currently causing about 1.6 million deaths
per year (3). Moreover, over the past few years, to eluci-
date the mechanisms of neonatal sepsis, various kinds of
efforts have concentrated on the host genetic variability (4-
7). Some gene makers, such as CD64 (8), IL-6,CR,and PCT(9)
have been indicated to be associated with neonatal sepsis.
Moreover, the whole gene expression profiling of neonatal
sepsis have been performed (10). Smith et al. (11) identi-
fied a 52-gene-classifier that could predict bacterial infec-
tion accurately by integrating co-expressed gene modules
and immune and metabolic pathways. However, the exact

interacting factor that response to the infection of neona-
tal sepsis is still unclear and is needed to urgently be dis-
closed.

Network analysis has opened new insights into the
pathogenesis and progression of the diseases (12-14). It is
believed that the dynamics of the molecular networks dur-
ing the progression of the disease can contribute to track-
ing the biomarkers for this disease (15). Moreover, it has
been reported that functional gene modules could help us
understand the mechanism of diseases and provide oppor-
tunities to develop new therapies (16, 17). Currently, Ma et
al. (18) proposed a differential module (DM) algorithm to
identify differentially expressed gene modules with com-
mon members yet varied connectivity across multiple dif-
ferential co-expression networks (DCNs).
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2. Objectives

In the present study, we aimed to explore the poten-
tial biomarkers for neonatal sepsis based on the module-
search algorithm. To achieve this, the gene expression pro-
file of neonatal sepsis and human protein-protein interac-
tion (PPI) data was collected and preprocessed. Then, the
DCN was constructed by integrating gene expression and
PPI data. Next, a module searching algorithm, containing
seed gene selection, module searching by seed gene ex-
pansion and module refinement was performed. Statisti-
cal significance analysis was conducted to select the DMs.
This study integrated the gene expression data of neona-
tal sepsis with PPI data and co-expression information to
track the DM using a novel module-search strategy. The re-
sults might contribute to understanding the progression
and treatment of neonatal sepsis.

3. Methods

3.1. Acquisition of Expression Profile Data

This work is a case-control bioinformatics analysis
using already published microarray data of neona-
tal sepsis. The gene expression dataset of neona-
tal sepsis under the accessing number of E-GEOD-
25504 was recruited from the Array Express database
(http://[www.ebi.ac.uk/arrayexpress). In E-GEOD-25504,
there were a total of 170 samples that existed on four plat-
forms. To eliminate the batch effect, only samples existed
on the platform of Illumina HumanHT-12 v3.0 Expression
Bead Chip in training set were retained in our study.
Meanwhile, we removed the samples with viral infections.
Finally, a total of 62 samples were retained, including 27
neonatal samples with a confirmed blood culture-positive
test for sepsis (bacterial infected cases) and 35 matched
controls. The details of demographical variables and a
confounding factor have been presented in the previous
studies (10, 11). Moreover, in the previous studies, the
researchers have performed a power calculation using
the Illumina chip platform, on an independent set of 30
neonatal samples at 9 months of age and showed that the
study design has 90% power to detect a twofold change in
expression with an « of 1% (false discovery rate (FDR) cor-
rected) (10, 11). The gene expression data was preprocessed
and the probes were mapped to the corresponding official
gene symbol. Finally, we obtained 15,449 genes and their
expression data from the microarray dataset.

3.2. Construction of PPI Network

The human PPI data was downloaded from the
database of search tool for the Retrieval of interacting

genes/proteins (STRING, http://string-db.org), which pro-
vided a comprehensive, yet quality-controlled collection
of protein-protein associations for a large number of
organisms (19). A total of 787,896 interactions (covering
16,730 nodes) were downloaded from the STRING database.
By intersecting the genes obtained from microarray pro-
file to the PPI data, we constructed a background PPI
network with 453,107 interactions.

3.3. Construction of the DCN

For each interaction of two genes under the disease
condition, we calculated the absolute value of Pearson cor-
relation coefficient (PCC), respectively, to assess the co-
expression situation. In an attempt to eliminate indirect
correlation because of a third gene, the utilization of the
first order partial PCC was implemented (20). Then, to se-
lect the co-expressed genes, the interactions whose abso-
lute value of PCC value was greater than the pre-defined
threshold § (§ = 0.9) were selected to construct the co-
expression network.

Meanwhile, the one-side t-test was utilized to deter-
mine the P value of the differential gene expression be-
tween disease and normal conditions. Then, the EdgeR (21),
a Bio conductor package for differential expression analy-
sis of digital gene expression data, was utilized to detect
differential gene expression for the microarray data. The
weight wm, n on edge (m, n) in the co-expression network
was calculated as following Formula 1:

Wonn

1
(logpm +logpn) 2 ;
m n 77/f

cor (m,n) > 6
_ (2x™®0,4 ev logPl)% (m,n) =9,

if cor(m,n) <é
®

Where m, n represented the two genes on each edge.
Pm and p, were respective P values of differential expres-
sion for genes m and n. V was on behalf of the gene set of
the co-expression network and cor (m, n) represented the
absolute value of PCC between gene m and n.

In this case, a DCN was built and each edge was as-
signed aweightvalue. Under this weighting scheme, genes
that were co-expressed and significantly differentially ex-
pressed were assigned high weights, which might indi-
cated that these genes exhibited differential activities be-
tween disease and normal conditions. Therefore, these
genes might play important roles during the occurrence
and development of neonatal sepsis.

3.4. Identification of Modules in DCN

The module algorithm has been introduced to explore
gene modules with common members but varied connec-
tivity across multiple molecular interaction networks (22).
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In this article, we performed the following three steps to
identify the candidate modules from DCN.

3.4.1. Seed Prioritization

In this part, we firstly ranked genes in DCN using the
topological feature of the genes contained in the network.
Specifically, we computed the importance of each gene m
in the DCN. The importance of a gene in the network de-
pends on the number of its neighbors, strength of connec-
tion and importance of its neighbors. In this case, each
gene was given a z-sore in the current study. All genes con-
tained in the DCN were ranked in descending order based
onthez-soresand the top 5% geneswere considered as seed
genes.

3.4.2. Candidate Modules

In this step, the modules were searched via the expan-
sion and entropy minimization of seed genes. Starting
from each seed gene, the module search step iteratively
included genes whose addition led to the maximum de-
crease in the graph entropy-based objective function and
the search stopped until there was no decrease in the objec-
tive function. For the known seed gene v €V, it was thought
asamodule C. Then, we joined the neighbors v’ e Vof gene
v into this module to form a new module C'. We calculated
the entropy decrease AH as the connectivity between C
and C. The function was defined: AH (C’, C)=H (C)-H
(C).1f AH(C’, C)> 0, we thought the neighbor gene v in-
creased the connectivity of module C. Next, we joined all
the others neighbor gene v’ which can result in AH (C’, C)
> 0 into the module C until there were no additional ones.
In this condition, it meant that each gene could belong to
one or more modules and each module contained at least
one seed gene.

In addition, we performed the refinement of modules
obtained above. The modules with node sizes < 5 were re-
moved. What was more, the modules were merged if the
overlapping degree of nodes was between two modules >
0.5.

3.5. Significant Analysis

The statistically significance of candidate modules was
calculated on the basis of the null distribution of modules
generated through randomized networks. Firstly, the net-
work with the same number of edges in DCN was randomly
captured from the background PPI network as random-
ized networks by degree-preserved edge shuffling. This
step was performed 100 times randomly. Then, the module
searching was conducted from the randomized networks.
In addition, the empirical P value of each module was eval-
uated as the probability of the module with the smaller
score by chance. The Formula 2 was shown as followed:
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P Value = Sum%

Where HR stood for the number of modules from ran-
domized networks and HD was the number of modules
from DCN. In addition, the Benjamini and Hochberg (23)
method was introduced to adjust the P value. Finally, the
modules with adjusted P < 0.05 were considered as the
DMs.

(2)

3.6. Functional Analysis

To study functional inference of DMs, pathway
enrichment analysis was conducted in Genelibs
(http://www.genelibs.com/gb) based on the Kyoto encyclo-
pedia of genes and genomes (KEGG) pathway database.
The Fisher’s exact test was utilized to determine the P val-
ues and the Benjamini-Hochberg method was performed
to conduct multiple testing on the P values. The pathways
whose adjusted P< 0.05 were considered as the significant
pathways.

4. Results

In our study, in order to explore the dynamic molecular
changes in neonatal sepsis, we utilized the module-search
algorithm to identify sub-networks (modules) in DCN. By
topological analysis of DCN, the seed genes were identified
and the modules were identified on the basis of the calcu-
lation of entropy change. Finally, we determined the DMs
and their functional inference by statistical analysis and
pathway enrichment analysis, respectively.

4.1. Construction of DCN

Prior to the analysis, gene expression data of neona-
tal sepsis and human PPIs were obtained from the open
databases and then preprocessed, respectively. Then we
constructed the background PPIs by integrating transcrip-
tome data and PPI data, and calculated the absolute value
of the PCC of all gene intersections. Under the pre-defined
threshold of § > 0.9, a total of 430 interactions (covering
324 genes) were obtained. Then, the EdgeR was applied
to assign a weight value to each interaction. As shown
in Figure 1, the DCN with 430 interactions (covering 324
genes) was constructed and each interaction was assigned
aweightvalue.

4.2. Identification of Candidate Modules From DCN

In this part, the genes contained in the DCN were
ranked in descending order according to their z-scores and
the top 5% genes according to the z-score distribution were
considered as seed genes. We identified a total of 16 seed
genes from the DCN. The details of the seed genes were
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Figure 1. The Differential Co-Expression Network (DCN), Which Included 430 Interactions (324 genes) in Neonatal Sepsis

Orange nodes were behalf of the seed genes.

shown in Table 1. Amongst these 16 seed genes, there were 6
genes with z-score > 60, which were RPS20 (z-score =78.70),
RPL6 (z-score = 75.60), RPL18A (z-score = 74.92), RPS19 (z-
score = 72.65), RPS16 (z-score = 61.93) and RPS5 (z-score =
61.42). Starting from these 16 seed genes, a total of 16 mod-
ules were identified. After module refining, a total of 3 can-
didate modules (Module 1, Module 2 and Module 3) were
identified.

4.3. Selection of the DM

Based on the statistical analysis, we obtained the p-
values of these 3 candidate modules. The result showed
that only Module 3 (P = 0.04) was a DM in this work, the
result was shown in Figure 2. We found that there were 64
edges (covering 27 nodes) in Module 3. Meanwhile, we no-
ticed that 7 seed genes existed in Module 3, all which were
ribosomes-related genes. RPS16 (z-score = 61.93) showed the
highest z-score in this module.
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Table 1. The 16 Seed Genes With Their z-Scores in Descending Order

Seed Genes z-Score Seed Genes z-Score
RPS20 78.70 RPS27A 58.05
RPL6 75.60 RPS15A 55.80
RPL18A 74.92 RPL12 55.40
RPS19 72.65 RPS13 53.16
RPS16 61.93 RPS10 5174
RPS5 61.42 RPS18 51.30
RPL19 59.94 RPS3 50.12
RPL36 58.44 RPS12 49.66

Figure 2. The Differential Module, Which Included of 64 Interactions (27 Nodes)

NSMCE1

IMP3 /
GLTSCR2
CIB1 — /

EIF3G

GroeL—C198P

RPL23A

Orange nodes represented the seed genes.

4.4. Functional analysis

Genes usually take part in the biological process in a
functional cooperation way in a certain disease. In the
present study, to disclose the functional inference of the
DM, pathway enrichment analysis was conducted. Under
the threshold value of P <0.05, ribosome biogenesis in eu-
karyotes (P = 0.0088) was identified. We inferred that the
DM mainly affected the pathway ribosome biogenesis in
eukaryotes to function during the occurrence and develop-
ment of neonatal sepsis.
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5. Discussion

Septicemia in neonates refers to generalized bacterial
infection documented by a positive blood culture in the
first 4 weeks of life (24). The infection in neonates is a
global problem with significant morbidity and mortal-
ity (25). Preliminary studies indicate that the diagnosis
of neonatal sepsis is complicated via nonspecific clinical
symptomatology, a high false negative rate and a delay in
obtaining blood culture results. Hence, searching an ideal
biomarker for neonatal sepsis was with great help for rec-
ognizing the definite infection mechanisms and giving a
guide for the principles of therapy at an early stage.

Recently, it has been indicated that the analysis of func-
tional modules instead of individual genes would be more
effective for system-wide identification of cellular func-
tions (26). Moreover, the concept of network biology has
been widely applied to a variety of disease. Xing et al. (27)
indicated that specific gene modules derived from gene co-
expression networks and may provide better understand-
ing of molecular mechanisms in disease. In co-expression
networks, two genes are connected and assumed to func-
tionally interact if their expression profiles are correlated
across multiple conditions. While networks contained
only co-expression information it might reduce the statis-
tical power for identifying genes that are perturbed under
disease conditions.

By network topological measurements, we identified
16 seed genes from the DCN. It could easily be found that
all seed genes were Ribosomes-related genes. Ribosome,
the organelle that catalyzes protein synthesis, consists of
a small 40S subunit and a large 60S subunit. Amongst the
16 seed genes, 11 seed genes belong to 40S subunit and 5 be-
long to 60S ribosomal subunit. Starting from these seed
genes, we carried out a modules-search algorithm to iden-
tify the gene modules from DCN. Only one DM (Module 3)
was identified, which was involved in the pathway of ribo-
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some biogenesis in eukaryotes.

In Module 3, RPS16 was the initial seed gene. RPS16 (ri-
bosomal protein S16) encode the ribosomal protein that
is a component of the 40S subunit, which belongs to the
S9P family of ribosomal proteins. Ribosomes, which syn-
thesize the proteome of cells, are complex ribonucleopro-
teins in eukaryotes. Ribosomal proteins, in conjunction
with rRNA, make up the ribosomal subunits involved in the
cellular process of translation (28, 29). Ghosh et al. (30)
indicated that RPS5-RPS16 communication is essential for
efficient translation initiation in yeast S. cerevisiae. Karan
et al. (31) reported that RPS16 was correlated with the pro-
gression of human prostate cancer. Yang et al. (32) revealed
that protein synthesis processes of RPS16 were related to
the progression of disc degeneration. However, there was
only a few relevant researches for this gene in neonatal
sepsis. In the present study, RPS16 and ribosome biogen-
esis in eukaryotes pathway were indicated to be the im-
portant gene and functional pathway in neonatal sepsis,
respectively. Further experimental analysis should be im-
plemented to reveal the underlying relationship between
them and neonatal sepsis.

There are several limitations in the present study. The
samples were retrieved from the open access database but
not obtained from our hospital. We did not perform the
microarray analysis of samples from patients with neona-
tal sepsis. This work is a pure bioinformatics analysis;
the results were not verified by wet experiments. In the
present study, we identified a key gene RPS16 and a sig-
nificant module involved in ribosome biogenesis in eu-
karyotes that were related to neonatal sepsis, which might
be potential biomarkers for early detection and therapy
for neonatal sepsis. Further experiments for verification
should be performed in the future.
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