Document Type : Review articles


1 Cardiovascular Research Center, Urmia University of Medical Sciences, Urmia, Iran

2 Qazvin University of Medical Sciences, Qazvin, Iran

3 Department of Cardiology, Tehran University of Medical Sciences, Tehran, Iran

4 Department of Cardiology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran

5 Shiraz University of Medical Science, Shiraz, Iran

6 Department of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran.


Background: A rise in the cancer rate causes an increase in the occurrence of cardio-toxic complications while using chemotherapy drugs. Cancer stem cells (CSCs) are cell masses resistant to cancer treatment which escape from cell death by changing signaling pathways. Therefore, increasing the dosage of chemotherapy drugs increases the damage to the heart tissue and the consequences of cardio-toxicity.
Investigating the signaling pathways responsible for the survival of CSCs through changing the amount of reactive oxygen species (ROS), inflammation, and apoptosis, and the effect of these factors on cardiomyocytes at the molecular level can provide a more detailed view of how the cardiotoxicity process works. Among the important signaling pathways involved in the cardiotoxicity process, through the three processes of increasing oxidative stress, inflammation, and apoptosis, we can mention Notch, pI3K/AKT, wnt signaling pathways, and NF-kB. This approach can suggest therapeutic methods capable of destroying CSCs with less cardiotoxicity effects.
Conclusion: Finally, as a hypothesis, it can be said that effective factors on the survival of CSCs can influence the cardio-toxicity by impacting ROS, inflammation, and apoptosis process.


  1. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021;71(3):209-49. doi: 10.3322/caac.21660. [PubMed: 33538338]
  2. Tutunchi S, Akhavan S, Bereimipour A, Hossein Ghaderian SM. Evaluation of important molecular pathways and candidate diagnostic biomarkers of noninvasive to invasive stages in gastric cancer by in silico analysis. J Oncol. 2021;2021:5571413. doi: 10.1155/2021/5571413. [PubMed: 34054953]
  3. Khalili P, Maddah R, Maleknia M, Shateri Amiri B, Forouzani F, Hasanvand A, et al. evaluation of genes and molecular pathways involved in the progression of monoclonal gammopathy of undetermined significance (MGUS) to multiple myeloma: a systems biology approach. Mol Biotechnol. 2023;65(8):1275-86. doi: 10.1007/s12033-022-00634-6. [PubMed: 36504354]
  4. Sarihi S, Tanideh N, Tezerji S, Alipour B. The Effect of quercetin on induction of apoptosis and cell proliferation in experimental rat colon carcinoma. Middle East J Fam Med. 2018;7(10):36. doi: 0.5742/MEWFM.2018.93384.
  5. Haybar H, Shahrabi S, Rezaeeyan H, Jodat H, Saki N. Strategies to inhibit arsenic trioxide‐induced cardiotoxicity in acute promyelocytic leukemia. J Cell Physiol. 2019;234(9):14500-06. doi: 10.1002/jcp.28292. [PubMed: 30770558]
  6. Shaikh AY, Shih JA. Chemotherapy-induced cardiotoxicity. Curr Heart Fail Rep. 2012;9(2):117-27. doi: 10.1007/s11897-012-0083-y. [PubMed: 22382639]
  7. Sheikh M, Mahabadi BS, Ostadrahimi P. Prevalence of addiction in Iranian myocardial infarction patients: a systematic review and meta-analysis. Int J Curr Res Biol Med. 2018;3(12):47-52.
  8. Mahmoodi Z, Salarzaei M, Sheikh M. Prosthetic vascular graft infection: A systematic review and meta-analysis on diagnostic accuracy of 18FDG PET/CT. Gen Thorac Cardiovasc Surg. 2022;70(3):219-29. doi: 10.1007/s11748-021-01682-6. [PubMed: 34309812]
  9. Honore N, Galot R, van Marcke C, Limaye N, Machiels J-P. Liquid biopsy to detect minimal residual disease: methodology and impact. Cancers. 2021;13(21):5364. doi: 10.3390/cancers13215364. [PubMed: 34771526]
  10. Ghiaur G, Gerber J, Jones RJ. Concise review: Cancer stem cells and minimal residual disease. Stem Cells. 2012;30(1):89-93. doi: 10.1002/stem.769. [PubMed: 22045578]
  11. Kreso A, Dick JE. Evolution of the cancer stem cell
  12. model. Cell stem cell. 2014;14(3):275-91. doi: 10.1016/j.stem.2014.02.006. [PubMed: 24607403]
  13. Goodarzi V, Nouri S, Nassaj ZS, Bighash M, Abbasian S, Hagh RA. Long non coding RNAs reveal important pathways in childhood asthma: a future perspective. J Mol Histol. 2023;54:257–69. doi: 10.1007/s10735-023-10131-y. [PubMed: 37537509]
  14. Mohan N, Shen Y, Endo Y, ElZarrad MK, Wu WJ. Trastuzumab, but not pertuzumab, dysregulates HER2 signaling to mediate inhibition of autophagy and increase in reactive oxygen species production in human cardiomyocytes. Mol Cancer Ther. 2016;15(6):1321-31. doi: 10.1158/1535-7163.MCT-15-0741. [PubMed: 27197303]
  15. Zhao L, Zhang B. Doxorubicin induces cardiotoxicity through upregulation of death receptors mediated apoptosis in cardiomyocytes. Sci Rep. 2017;7:44735. doi: 10.1038/srep44735. [PubMed: 28300219]
  16. Maddah R, Goodarzi V, Asadi-Yousefabad S-L, Abbasluo M, Shariati P, Kafraj AS. Evaluation of the gut microbiome associated with COVID-19. Inform Med Unlocked. 2023;38:101239. doi: 10.1016/j.imu.2023.101239. [PubMed: 37033411]
  17. Huang Z, Lin S, Long C, Zhou X, Fan Y, Kuang X, et al. Notch signaling pathway mediates Doxorubicin-driven apoptosis
  18. in cancers. Cancer Manag Res. 2018;10:1439. doi: 10.2147/CMAR.S160315. [PubMed: 29922088]
  19. Wenningmann N, Knapp M, Ande A, Vaidya TR, Ait-Oudhia S. Insights into doxorubicin-induced cardiotoxicity: molecular mechanisms, preventive strategies, and early monitoring. Mol Pharmacol. 2019;96(2):219-232. doi: 10.1124/mol.119.115725. [PubMed: 31164387]
  20. Vu T, Claret FX. Trastuzumab: updated mechanisms of action and resistance in breast cancer. Front oncol. 2012;2:62. doi: 10.3389/fonc.2012.00062. [PubMed: 22720269]
  21. Mohan N, Jiang J, Dokmanovic M, Wu WJ. Trastuzumab-mediated cardiotoxicity: current understanding, challenges, and frontiers. Antib Ther. 2018;1(1):13-7. doi: 10.1093/abt/tby003. [PubMed: 30215054]
  22. Ziccheddu G, Proietti E, Moschella F. The Janus face of cyclophosphamide. OncoImmunology. 2013;2(9):e25789. doi: 10.4161/onci.25789. [PubMed: 24244905]
  23. Iqubal A, Iqubal MK, Sharma S, Ansari MA, Najmi AK, Ali SM, et al. Molecular mechanism involved in cyclophosphamide-induced cardiotoxicity: Old drug with a new vision. Life Sci. 2019;218:112-31. doi: 10.1016/j.lfs.2018.12.018. [PubMed: 30552952]
  24. Korashy HM, Maayah ZH, Al Anazi FE, Alsaad AM, Alanazi IO, Belali OM, et al. Sunitinib inhibits breast cancer cell proliferation by inducing apoptosis, cell-cycle arrest and DNA repair while inhibiting NF-κB signaling pathways. Anticancer Res. 2017;37(9):4899-09. doi: 10.21873/anticanres.11899. [PubMed: 28870911]
  25. Bouitbir J, Alshaikhali A, Panajatovic MV, Abegg VF, Paech F, Krähenbühl S. Mitochondrial oxidative stress plays a critical role in the cardiotoxicity of sunitinib: Running title: Sunitinib and oxidative stress in hearts. Toxicology. 2019;426:152281. doi: 10.1016/j.tox.2019.152281. [PuMed: 31445075]
  26. Che CL, Zhang YM, Zhang HH, Sang YL, Lu B, Dong FS, et al. DNA microarray reveals different pathways responding to paclitaxel and docetaxel in non-small cell lung cancer cell line. Int J Clin Exp Pathol. 2013;6(8):1538-48. [PubMed: 23923072]
  27. Lage R, Cebro-Marquez M, Rodriguez-Mañero M, Gonzalez-Juanatey JR, Moscoso I. Omentin protects H9c2 cells against docetaxel cardiotoxicity. PLoS One. 2019;14(2):e0212782. doi: 10.1371/journal.pone.0212782. [PubMed: 30794687]
  28. Hassan KA, Wang L, Korkaya H, Chen G, Maillard I, Beer DG, et al. Notch pathway activity identifies cells with cancer stem cell–like properties and correlates with worse survival in lung AdenocarcinomaNotch activity identifies lung cancer stem cells. Clin Cancer Res. 2013;19(8):1972-80. doi: 10.1158/1078-0432.CCR-12-0370. [PubMed: 23444212]
  29. Grieve S, Biswas D. Targeting reactive oxygen species homeostasis and metabolism in cancer stem cells. Handbook of Oxidative Stress in Cancer: Mechanistic Aspects: Springer; 2022. doi: 10.1007/978-981-15-4501-6_150-1
  30. Qiang L, Wu T, Zhang H, Lu N, Hu R, Wang Y, et al. HIF-1α is critical for hypoxia-mediated maintenance of glioblastoma stem cells by activating Notch signaling pathway. Cell Death Differ. 2012;19(2):284-94. doi: 10.1038/cdd.2011.95. [PubMed: 21818118]
  31. Haybar H, Shahrabi S, Zayeri ZD, Pezeshki S. Strategies to increase cardioprotection through cardioprotective chemokines in chemotherapy-induced cardiotoxicity. Int J Cardiol. 2018;269:276-82. doi: 10.1016/j.ijcard.2018.07.087. [PubMed: 30054148]
  32. Abdolalian M, Ebrahimi M, Aghamirzadeh M, Eshraghi N, Moghaddasi M, Eslamnik P. The role of leukemia inhibitory factor in pathogenesis of pre-eclampsia: molecular and cell signaling approach. J Mol Histol. 2021;52(4):635-42. doi: 10.1007/s10735-021-09989-7. [PubMed: 34076833]
  33. Rizzo P, Mele D, Caliceti C, Pannella M, Fortini C, Clementz AG, et al. The role of notch in the cardiovascular system: potential adverse effects of investigational notch inhibitors. Front Oncol. 2015;4:384. doi: 10.3389/fonc.2014.00384. [PubMed: 25629006]
  34. Yuan H, Du S, Deng Y, Xu X, Zhang Q, Wang M, et al. Effects of microRNA-208a on inflammation and oxidative stress in ketamine-induced cardiotoxicity through Notch/NF-κB signal pathways by CHD9. Biosci Rep. 2019;39(5). doi: 10.1042/BSR20182381. [PubMed: 30923228]
  35. Kops GJ, Dansen TB, Polderman PE, Saarloos I, Wirtz KW, Coffer PJ, et al. Forkhead transcription factor FOXO3a protects quiescent cells from oxidative stress. Nature. 2002;419(6904):316-21. doi: 10.1038/nature01036. [PubMed: 12239572]
  36. Tabatabaee S, Bahrami F, Janahmadi M. The critical modulatory role of spiny stellate cells in seizure onset based on dynamic analysis of a neural mass model. Front Neurosci. 2021;15:743720. doi: 10.3389/fnins.2021.743720. [PubMed: 35002598]
  37. Lleonart ME, Abad E, Graifer D, Lyakhovich A. Reactive oxygen species-mediated autophagy defines the fate of cancer stem cells. Antioxid Redox Signal. 2018;28(11):1066-79. doi: 10.1089/ars.2017.7223. [PubMed: 28683561]
  38. Zordoky BN, Anwar-Mohamed A, Aboutabl ME, El-Kadi AO. Acute doxorubicin cardiotoxicity alters cardiac cytochrome P450 expression and arachidonic acid metabolism in rats. Toxicol Appl Pharmacol. 2010;242(1):38-46. doi: 10.1016/j.taap.2009.09.012. [PubMed: 19796650]
  39. Ichihara S, Yamada Y, Kawai Y, Osawa T, Furuhashi K, Duan Z, et al. Roles of oxidative stress and Akt signaling in doxorubicin cardiotoxicity. Biochem Biophys Res Commun. 2007;359(1):27-33. doi: 10.1016/j.bbrc.2007.05.027. [PubMed: 17531194]
  40. Cao Y, Ruan Y, Shen T, Huang X, Li M, Yu W, et al. Astragalus polysaccharide suppresses doxorubicin-induced cardiotoxicity by regulating the PI3k/Akt and p38MAPK pathways. Oxid Med Cell Longev. 2014;2014. doi: 10.1155/2014/674219. [PubMed: 25386226]
  41. Zhang X, Hu C, Kong CY, Song P, Wu HM, Xu SC, et al. FNDC5 alleviates oxidative stress and cardiomyocyte apoptosis in doxorubicin-induced cardiotoxicity via activating AKT. Cell Death Differ. 2020;27(2):540-55. doi: 10.1038/s41418-019-0372-z. [PubMed: 31209361]
  42. Daosukho C, Ittarat W, Lin SM, Sawyer DB, Kiningham K, Lien YC, et al. Induction of manganese superoxide dismutase (MnSOD) mediates cardioprotective effect of tamoxifen (TAM). J Mol Cell Cardiol. 2005;39(5):792-803. doi: 10.1016/j.yjmcc.2005.07.011. [PubMed: 16140321]
  43. Sahu R, Dua TK, Das S, De Feo V, Dewanjee S. Wheat phenolics suppress doxorubicin-induced cardiotoxicity via inhibition of oxidative stress, MAP kinase activation, NF-κB pathway, PI3K/Akt/mTOR impairment, and cardiac apoptosis. Food Chem Toxicol. 2019;125:503-519. doi: 10.1016/j.fct.2019.01.034. [PubMed: 30735749]
  44. Xu Z, Lin S, Wu W, Tan H, Wang Z, Cheng C, et al. Ghrelin prevents doxorubicin-induced cardiotoxicity through TNF-alpha/NF-kappaB pathways and mitochondrial protective mechanisms. Toxicology. 2008;247(2-3):133-8. doi: 10.1016/j.tox.2008.02.018. [PubMed: 18400355]
  45. Zhang J, Wang M, Ding W, Zhao M, Ye J, Xu Y, et al. Resolvin E1 protects against doxorubicin-induced cardiotoxicity by inhibiting oxidative stress, autophagy and apoptosis by targeting AKT/mTOR signaling. Biochem Pharmacol. 2020;180:114188. doi: 10.1016/j.bcp.2020.114188. [PubMed: 32750329]
  46. Ma XY, Liu AN, Liu WJ, Wang ZH, Chang NW, Li SY, et al. Analyze and identify peiminine target EGFR improve lung function and alleviate pulmonary fibrosis to prevent exacerbation of chronic obstructive pulmonary disease by phosphoproteomics analysis. Front Pharmacol. 2019;10:737. doi: 10.3389/fphar.2019.00737. [PubMed: 31333459]
  47. Watanabe K, Nagao M, Toh R, Irino Y, Shinohara M, Iino T, et al. Critical role of glutamine metabolism in cardiomyocytes under oxidative stress. Biochem Biophys Res Commun. 2021;534:687-93. doi: 10.1016/j.bbrc.2020.11.018. [PubMed: 33213841]
  48. Xie Z, Xia W, Hou M. Long intergenic non‑coding RNA‑p21 mediates cardiac senescence via the Wnt/β‑catenin signaling pathway in doxorubicin-induced cardiotoxicity. Mol Med Rep. 2018;17(2):2695-704. doi: 10.3892/mmr.2017.8169. [PubMed: 29207090]
  49. Akhavan S, Tutunchi S, Malmir A, Ajorlou P, Jalili A, Panahi G. Molecular study of the proliferation process of beta cells derived from pluripotent stem cells. Mol Biol Rep. 2022;49(2):1429-36. doi: 10.1007/s11033-021-06892-y. [PubMed: 34734370]
  50. Liang L, Tu Y, Lu J, Wang P, Guo Z, Wang Q, et al. Dkk1 exacerbates doxorubicin-induced cardiotoxicity by inhibiting the Wnt/β-catenin signaling pathway. J Cell Sci. 2019;132(10):jcs228478. doi: 10.1242/jcs.228478. [PubMed: 31028181]
  51. Iqbal M, Dubey K, Anwer T, Ashish A, Pillai KK. Protective effects of telmisartan against acute doxorubicin-induced cardiotoxicity in rats. Pharmacol Rep. 2008;60(3):382-90. [PubMed: 18622063]
  52. Arnold KM, Opdenaker LM, Flynn D, Sims-Mourtada J. Wound healing and cancer stem cells: inflammation as a driver of treatment resistance in breast cancer. Cancer Growth Metastasis. 2015;8:1-13. doi: 10.4137/CGM.S11286. [PubMed: 25674014]
  53. Tanno T, Matsui W. Development and maintenance of cancer stem cells under chronic inflammation. J Nippon Med Sch. 2011;78(3):138-45. doi: 10.1272/jnms.78.138. [PubMed: 21720087]
  54. Korkaya H, Liu S, Wicha MS. Regulation of cancer stem cells by cytokine networks: attacking cancer's inflammatory roots. Clin Cancer Res. 2011;17(19):6125-9. doi: 10.1158/1078-0432.CCR-10-2743. [PubMed: 21685479]
  55. Karimi A, Hashemian SMR. Cytokine storm in COVID-19 and the treatment simulacrum. BBRJ. 2020;4(Suppl 1):S41-8. doi: 10.4103/bbrj.bbrj_128_20.
  56. Mehrpisheh S, Mosayebi Z, Memarian A, Kadivar M, Nariman S, Ostadrahimi P, et al. Evaluation of specificity and sensitivity of gastric aspirate shake test to predict surfactant deficiency in Iranian premature infants. Pregnancy Hypertens. 2015;5(2):182-6. doi: 10.1016/j.preghy.2015.01.006. [PubMed: 25943642]
  57. Nishal S, Phaugat P, Bazaad J, Dhaka R, Khatkar S, Khatkar A, et al. A concise review of common plant-derived compounds as a potential therapy for Alzheimer's disease and Parkinson's disease: Insight into structure-activity-relationship. CNS Neurol Disord Drug Targets. 2023;22(7):1057-69. doi: 10.2174/1871527321666220614110616. [PubMed: 35702799]
  58. Iliopoulos D, Jaeger SA, Hirsch HA, Bulyk ML, Struhl K. STAT3 activation of miR-21 and miR-181b-1 via PTEN
  59. and CYLD are part of the epigenetic switch linking inflammation to cancer. Mol Cell. 2010;39(4):493-506. doi: 10.1016/j.molcel.2010.07.023. [PubMed: 20797623]
  60. Zeinali M, Babadi AJ, Barani L. Brown-Sequard syndrome caused by multiple knife trauma gunshot with late debridement: Two cases report and literature review. Int J Surg Case Rep. 2023;105: 108068. doi: 10.1016/j.ijscr.2023.108068. [PubMed: 37011461]
  61. Fontes JA, Rose NR, Čihakova D. The varying faces of IL-6: From cardiac protection to cardiac failure. Cytokine. 2015;74(1):62-8. doi: 10.1016/j.cyto.2014.12.024. [PubMed: 25649043]
  62. Foroughi M, Mohammadi Z, Majidi Tehrani M, Bakhtiari M, Dabbagh A, Haji Molahoseini M. The effect of Erythropoietin administration on the serum level of YKL-40, pro-BNP and IL-6 in coronary surgery patients. Iran J Pharm Res. 2020;19(3):430-9. doi: 10.22037/ijpr.2020.112867.13993. [PubMed: 33680042]
  63. Tanaka T, Kanda T, McManus BM, Kanai H, Akiyama H, Sekiguchi K, et al. Overexpression of interleukin-6 aggravates viral myocarditis: impaired increase in tumor necrosis factor-α. J Mol Cell Cardiol. 2001;33(9):1627-35. doi: 10.1006/jmcc.2001.1428. [PubMed: 11549342]
  64. Hirsch HA, Iliopoulos D, Struhl K. Metformin inhibits the inflammatory response associated with cellular transformation and cancer stem cell growth. Proc Natl Acad Sci U S A. 2013;110(3):972-7. doi: 10.1073/pnas.1221055110. [PubMed: 23277563]
  65. Pereira JD, Tosatti JAG, Simoes R, Luizon MR, Gomes KB, Alves MT. microRNAs associated to anthracycline-induced cardiotoxicity in women with breast cancer: A systematic review and pathway analysis. Biomed Pharmacother. 2020;131:110709. doi: 10.1016/j.biopha.2020.110709. [PubMed: 32937248]
  66. Ma H, Yu S, Liu X, Zhang Y, Fakadej T, Liu Z, et al. Lin28a regulates pathological cardiac hypertrophic growth
  67. through Pck2-mediated enhancement of anabolic
  68. synthesis. Circulation. 2019;139(14):1725-40. doi: 10.1161/CIRCULATIONAHA.118.037803. [PubMed: 30636447]
  69. Wang X, Wang Q, Li W, Zhang Q, Jiang Y, Guo D, et al. TFEB-NF-κB inflammatory signaling axis: a novel therapeutic pathway of Dihydrotanshinone I in doxorubicin-induced cardiotoxicity. Exp Clin Cancer Res. 2020;39(1):93. doi: 10.1186/s13046-020-01595-x. [PubMed: 32448281]
  70. Kang YJ. Molecular and cellular mechanisms of cardiotoxicity. Environ Health Perspect. 2001;109(Suppl 1):27-34. doi: 10.1289/ehp.01109s127. [PubMed: 11250803]
  71. Aktan F. iNOS-mediated nitric oxide production and
  72. its regulation. Life Sci. 2004;75(6):639-53. doi: 10.1016/j.lfs.2003.10.042. [PubMed: 15172174]
  73. Zhang S, You ZQ, Yang L, Li LL, Wu YP, Gu LQ, et al. Protective effect of Shenmai injection on doxorubicin-induced cardiotoxicity via regulation of inflammatory mediators. BMC Complement Altern Med. 2019;19(1):317. doi: 10.1186/s12906-019-2686-2. [PubMed: 31744501]
  74. Soskić SS, Dobutović BD, Sudar EM, Obradović MM, Nikolić DM, Djordjevic JD, et al. Regulation of inducible nitric oxide synthase (iNOS) and its potential role in insulin resistance, diabetes and heart failure. Open Cardiovasc Med J. 2011;5:
  75. -63. doi: 10.2174/1874192401105010153. [PubMed: 21792376]
  76. Gallo MP, Malan D, Bedendi I, Biasin C, Alloatti G, Levi RC. Regulation of cardiac calcium current by NO and cGMP-modulating agents. Pflugers Arch. 2001;441(5):621-8. doi: 10.1007/s004240000475. [PubMed: 11294243]
  77. Davidson SM, Duchen MR. Effects of NO on mitochondrial function in cardiomyocytes: Pathophysiological
  78. relevance. Cardiovasc Res. 2006;71(1):10-21. doi: 10.1016/j.cardiores.2006.01.019. [PubMed: 16515774]
  79. Pecoraro M, Del Pizzo M, Marzocco S, Sorrentino R, Ciccarelli M, Iaccarino G, et al. Inflammatory mediators in a short-time mouse model of doxorubicin-induced cardiotoxicity. Toxicol Appl Pharmacol. 2016;293:44-52. doi: 10.1016/j.taap.2016.01.006. [PubMed: 26780402]
  80. Chen L, Holder R, Porter C, Shah Z. Vitamin D3 attenuates doxorubicin-induced senescence of human aortic endothelial cells by upregulation of IL-10 via the pAMPKα/Sirt1/Foxo3a signaling pathway. PLoS One. 2021;16(6):e0252816. doi: 10.1371/journal.pone.0252816. [PubMed: 34101754]
  81. Sun Z, Yan B, Yu WY, Yao X, Ma X, Sheng G, et al. Vitexin attenuates acute doxorubicin cardiotoxicity in rats via the suppression of oxidative stress, inflammation and apoptosis and the activation of FOXO3a. Exp Ther Med. 2016;12(3):1879-84. doi: 10.3892/etm.2016.3518. [PubMed: 27588105]
  82. Juhasz B, Thirunavukkarasu M, Pant R, Zhan L, Penumathsa SV, Secor Jr ER, et al. Bromelain induces cardioprotection against ischemia-reperfusion injury through Akt/FOXO pathway in rat myocardium. Am J Physiol Heart Circ Physiol. 2008;294(3):H1365-70. doi: 10.1152/ajpheart.01005.2007. [PubMed: 18192224]
  83. Chen Q, Chen X, Han C, Wang Y, Huang T, Du Y, et al. FGF-2 transcriptionally down-regulates the expression of BNIP3L via PI3K/Akt/FoxO3a signaling and inhibits necrosis and mitochondrial dysfunction induced by high concentrations of hydrogen peroxide in H9c2 cells. Cell Physiol Biochem. 2016;40(6):1678-91. doi: 10.1159/000453217. [PubMed: 28006775]
  84. Quagliariello V, Vecchione R, Coppola C, Di Cicco C, De Capua A, Piscopo G, et al. Cardioprotective effects of nanoemulsions loaded with anti-inflammatory nutraceuticals against doxorubicin-induced cardiotoxicity. Nutrients. 2018;10(9):1304. doi: 10.3390/nu10091304. [PubMed: 30223482]
  85. Yarmohammadi F, Karbasforooshan H, Hayes AW, Karimi G. Inflammation suppression in doxorubicin-induced cardiotoxicity: natural compounds as therapeutic options. Arch Pharmacol. 2021;394(10):2003-11. doi: 10.1007/s00210-021-02132-z. [PubMed: 34350498]
  86. Lin J, Lin H, Ma C, Dong F, Hu Y, Li H. MiR-149 aggravates pyroptosis in myocardial ischemia-reperfusion damage via silencing FoxO3. Med Sci Monit. 2019;25:8733-43. doi: 10.12659/MSM.918410. [PubMed: 31741467]
  87. Huang CF, Chen L, Li YC, Wu L, Yu GT, Zhang WF, et al. NLRP3 inflammasome activation promotes inflammation-induced carcinogenesis in head and neck squamous cell carcinoma. J Exp Clin Cancer Res. 2017;36(1):116. doi: 10.1186/s13046-017-0589-y. [PubMed: 28865486]
  88. Li C, Qiu J, Xue Y. Low-dose Diosbulbin-B (DB) activates tumor-intrinsic PD-L1/NLRP3 signaling pathway mediated pyroptotic cell death to increase cisplatin-sensitivity in gastric cancer (GC). Cell Biosci. 2021;11(1):38. doi: 10.1186/s13578-021-00548-x. [PubMed: 33579380]
  89. Wang X, Reyes ME, Zhang D, Funakoshi Y, Trape AP, Gong Y, et al. EGFR signaling promotes inflammation and cancer stem-like activity in inflammatory breast cancer. Oncotarget. 2017;8(40):67904-17. doi: 10.18632/oncotarget.18958. [PubMed: 28978083]
  90. Kelleni MT, Amin EF, Abdelrahman AM. Effect of metformin and sitagliptin on doxorubicin-induced cardiotoxicity in rats: impact of oxidative stress, inflammation, and apoptosis. J Toxicol. 2015;2015:424813. doi: 10.1155/2015/424813. [PubMed: 26880912]
  91. Mantawy EM, El-Bakly WM, Esmat A, Badr AM, El-Demerdash E. Chrysin alleviates acute doxorubicin cardiotoxicity in rats via suppression of oxidative stress, inflammation and apoptosis. Eur J Pharmacol. 2014;728:107-18. doi: 10.1016/j.ejphar.2014.01.065. [PubMed: 24509133]
  92. Ai W, Zhang Y, Tang QZ, Yan L, Bian ZY, Liu C, et al. Silibinin attenuates cardiac hypertrophy and fibrosis through blocking EGFR‐dependent signaling. J Cell Biochem. 2010;110(5):1111-22. doi: 10.1002/jcb.22623. [PubMed: 20564207]
  93. Huang C, Yoon C, Zhou XH, Zhou YC, Zhou WW, Liu H, et al. ERK1/2-Nanog signaling pathway enhances CD44 (+) cancer stem-like cell phenotypes and epithelial-to-mesenchymal transition in head and neck squamous cell carcinomas. Cell Death Dis. 2020;11(4):266. doi: 10.1038/s41419-020-2448-6. [PubMed: 32327629]
  94. Lin C, Wang L, Wang H, Yang L, Guo H, Wang X. Tanshinone IIA inhibits breast cancer stem cells growth in vitro and in vivo through attenuation of IL‐6/STAT3/NF‐kB signaling pathways. J Cell Biochem. 2013;114(9):2061-70. doi: 10.1002/jcb.24553. [PubMed: 23553622]
  95. Xia P, Xu XY. PI3K/Akt/mTOR signaling pathway in cancer stem cells: from basic research to clinical application. Am J Cancer Res. 2015;5(5):1602-9. [PubMed: 26175931]
  96. Zhai H, Fesler A, Ba Y, Wu S, Ju J. Inhibition of colorectal cancer stem cell survival and invasive potential by hsa-miR-140-5p mediated suppression of Smad2 and autophagy. Oncotarget. 2015;6(23):19735. doi: 10.18632/oncotarget.3771. [PMID: 25980495]
  97. Zhu JN, Fu YH, Hu ZQ, Li WY, Tang CM, Fei HW, et al. Activation of miR-34a-5p/Sirt1/p66shc pathway contributes to doxorubicin-induced cardiotoxicity. Sci Rep. 2017;7(1):11879. doi: 10.1038/s41598-017-12192-y. [PubMed: 28928469]
  98. Zhang L, Liu L, Li X. MiR-526b-3p mediates doxorubicin-induced cardiotoxicity by targeting STAT3 to inactivate
  99. VEGFA. Biomed Pharmacother. 2020;123:109751. doi: 10.1016/j.biopha.2019.109751. [PubMed: 31958751]
  100. Yu Y, Guo D, Zhao L. MiR-199 aggravates doxorubicin-induced cardiotoxicity by targeting TAF9b. Evid Based Complement Alternat Med. 2022;2022:4364779. doi: 10.1155/2022/4364779. [PubMed: 35873641]
  101. Zhao L, Qi Y, Xu L, Tao X, Han X, Yin L, et al. MicroRNA-140-5p aggravates doxorubicin-induced cardiotoxicity by promoting myocardial oxidative stress via targeting Nrf2 and Sirt2. Redox Biol. 2018;15:284-96. doi: 10.1016/j.redox.2017.12.013. [PubMed: 29304479]
  102. Huang P, Zhang Y, Wang F, Qin M, Ma J, Ji J, et al. MiR‐494‐3p aggravates pirarubicin‐induced cardiomyocyte injury by regulating MDM4/p53 signaling pathway. Environ Toxicol. 2023. doi: 10.1002/tox.23888. [PubMed: 37421283]
  103. Shen L, Li C, Zhang H, Qiu S, Fu T, Xu Y. Downregulation of miR-146a contributes to cardiac dysfunction induced by the tyrosine kinase inhibitor sunitinib. Front Pharmacol. 2019;10:914. doi: 10.3389/fphar.2019.00914. [PubMed: 31507414]
  104. Jin X, Yu W, Ye P. MiR‐125b enhances doxorubicin‐induced cardiotoxicity by suppressing the nucleus‐cytoplasmic translocation of YAP via targeting STARD13. Environ Toxicol. 2022;37(4):730-40. doi: 10.1002/tox.23438. [PubMed: 34921586]
  105. Fulda S, Pervaiz S. Apoptosis signaling in cancer stem cells. Int J Biochem Cell Biol. 2010;42(1):31-8. doi: 10.1016/j.biocel.2009.06.010. [PubMed: 19577660]
  106. Signore M, Ricci-Vitiani L, De Maria R. Targeting apoptosis pathways in cancer stem cells. Cancer Lett. 2013;332(2):374-82. doi: 10.1016/j.canlet.2011.01.013. [PubMed: 21315505]
  107. Quiroz-Reyes AG, Delgado-Gonzalez P, Islas JF, Gallegos JLD, Martinez Garza JH, Garza-Treviño EN. Behind the
  108. adaptive and resistance mechanisms of cancer stem cells to TRAIL. Pharmaceutics. 2021;13(7):1062. doi: 10.3390/pharmaceutics13071062. [PubMed: 34371753]
  109. He YC, Zhou FL, Shen Y, Liao DF, Cao D. Apoptotic death of cancer stem cells for cancer therapy. Int J Mol Sci. 2014;15(5):8335-51. doi: 10.3390/ijms15058335. [PubMed: 24823879]
  110. Falschlehner C, Emmerich CH, Gerlach B, Walczak H. TRAIL signalling: decisions between life and death. Int J Biochem Cell Biol. 2007;39(7-8):1462-75. doi: 10.1016/j.biocel.2007.02.007. [PubMed: 17403612]
  111. Moradi M, Nouri S, Nourozi A, Golbidi D. Prognostic value of coronary artery calcium score for determination of presence and severity of coronary artery disease. Pol J Radiol. 2017;82:165-9. doi: 10.12659/PJR.900643. [PubMed: 28392854]
  112. French R. The role of cFLIP in breast cancer stem cells: Cardiff University; 2014.
  113. Sangweni NF, Gabuza K, Huisamen B, Mabasa L, van Vuuren D, Johnson R. Molecular insights into the pathophysiology of doxorubicin-induced cardiotoxicity: a graphical representation. Arch Toxicol. 2022;96(6):1541-50. doi: 10.1007/s00204-022-03262-w. [PubMed: 35333943]
  114. Hsu PL, Mo FE. Matricellular protein CCN1 mediates doxorubicin-induced cardiomyopathy in mice. Oncotarget. 2016;7(24):36698-710. doi: 10.18632/oncotarget.9162. [PubMed: 27167338]
  115. Huang YS, Chang CC, Lee SS, Jou YS, Shih HM. Xist reduction in breast cancer upregulates AKT phosphorylation via HDAC3-mediated repression of PHLPP1 expression. Oncotarget. 2016;7(28):43256. doi: 10.18632/oncotarget.9673. [PubMed: 27248326]
  116. Fulda S. Regulation of apoptosis pathways in cancer stem cells. Cancer Lett. 2013;338(1):168-73. doi: 10.1016/j.canlet.2012.03.014. [PubMed: 22429999]
  117. Zhang N, Zhang Y, Zhao S, Sun Y. Septin4 as a novel binding partner of PARP1 contributes to oxidative stress induced human umbilical vein endothelial cells injure. Biochem Biophys Res Commun. 2018;496(2):621-7. doi: 10.1016/j.bbrc.2018.01.105.
  118. Wu S, Zhang Y, You S, Lu S, Zhang N, Sun Y. Septin4 aggravates hypoxia-induced cardiomyocytes injury by promoting HIF-1α ubiquitination and degradation through VHL. 2020. doi: 10.21203/
  119. Zhang Y, Ma C, Liu C, Wei F. Luteolin attenuates doxorubicin-induced cardiotoxicity by modulating the PHLPP1/AKT/Bcl-2 signalling pathway. PeerJ. 2020;8:e8845. doi: 10.7717/peerj.8845. [PubMed: 32435528]
  120. Zhiqiang Z, Qinghui Y, Yongqiang Z, Jian Z, Xin Z, Haiying M, et al. USP1 regulates AKT phosphorylation by modulating the stability of PHLPP1 in lung cancer cells. J Cancer Res Clin Oncol. 2012;138(7):1231-8. doi: 10.1007/s00432-012-1193-3. [PubMed: 22426999]