Document Type : Review articles


1 Department of General Surgery, Sina Hospital, Tehran University of Medical Sciences, Tehran, Iran

2 Department of Pathology, Sina Hospital, Tehran University of Medical Sciences, Tehran, Iran


Succinate dehydrogenase (SDH) is a multifaceted enzyme for the mitochondria of eukaryotes, which is responsible for converting succinate to fumarate as a component in the Krebs cycle. Its dysfunction occurs in several malignancies associated with endocrine and epithelial tumors. SDH is an enzymatic complex made of some subunits. Succinate is recognized as an oncometabolite; therefore, the discovery of SDH mutations can give a straight connection between the changes of succinate and tumorigenesis. Progresses in laboratory technologies made it possible to make profiles of and identify succinate accumulation in several types of cancer. In this study, we reviewed the potential roles of SDH mutation and alteration of succinate in tumorigenesis and as tumor markers for the early detection of malignancies.


  1. Nazar E, Khatami F, Saffar H, Tavangar M. The emerging role of succinate dehydrogenase genes (SDHx) in tumorigenesis. Int J Hematol Oncol Stem Cell Res. 2019;13(2):72-82. [PubMed: 31372201].
  2. Pollard PJ, Wortham NC, Tomlinson IP. The TCA cycle and tumorigenesis: the examples of fumarate hydratase and succinate dehydrogenase. Ann Med. 2003;35(8):632-9. doi: 10.1080/07853890310018458. [PubMed: 14708972].
  3. Eng C, Kiuru M, Fernandez MJ, Aaltonen LA. A role for mitochondrial enzymes in inherited neoplasia and beyond. Nat Rev Cancer. 2003;3(3):193-202. doi: 10.1038/nrc1013. [PubMed: 12612654].
  4. Chen JQ, Russo J. Dysregulation of glucose transport, glycolysis, TCA cycle and glutaminolysis by oncogenes and tumor suppressors in cancer cells. Biochim Biophys Acta. 2012;1826(2):370-84. doi: 10.1016/j.bbcan.2012.06.004. [PubMed: 22750268].
  5. Natanzi MM, Pasalar P, Kamalinejad M, Dehpour AR, Tavangar SM, Sharifi R, et al. Effect of aqueous extract of Elaeagnus Angustifolia fruit on experimental cutaneous wound healing in rats. Acta Med Iran. 2012;50(9):589-96. [PubMed: 23165807].
  6. Silveira PC, da Silva LA, Fraga DB, Freitas TP, Streck EL, Pinho R. Evaluation of mitochondrial respiratory chain activity in muscle healing by low-level laser therapy. J Photochem Photobiol B. 2009;95(2):89-92. doi: 10.1016/j.jphotobiol.2009.01.004. [PubMed: 19232497].
  7. DeBerardinis RJ, Sayed N, Ditsworth D, Thompson CB. Brick by brick: metabolism and tumor cell growth. Curr Opin Genet Dev. 2008;18(1):54-61. doi: 10.1016/j.gde.2008.02.003. [PubMed: 18387799].
  8. Sullivan LB, Martinez-Garcia E, Nguyen H, Mullen AR, Dufour E, Sudarshan S, et al. The proto-oncometabolite fumarate binds glutathione to amplify ROS-dependent signaling. Mol Cell. 2013;51(2):236-48. doi: 10.1016/j.molcel.2013.05.003. [PubMed: 23747014].
  9. Tretter L, Patocs A, Chinopoulos C. Succinate, an intermediate in metabolism, signal transduction, ROS, hypoxia, and tumorigenesis. Biochim Biophys Acta. 2016;1857(8):1086-101. doi: 10.1016/j.bbabio.2016.03.012.
  10. Xekouki P, Pacak K, Almeida M, Wassif CA, Rustin P, Nesterova M, et al. Succinate dehydrogenase (SDH) D subunit (SDHD) inactivation in a growth-hormone-producing pituitary tumor: a new association for SDH? J Clin Endocrinol Metab. 2012;97(3): 357-66. doi: 10.1210/jc.2011-1179. [PubMed: 22170724].
  11. Ni Y, Zbuk KM, Sadler T, Patocs A, Lobo G, Edelman E, et al. Germline mutations and variants in the succinate dehydrogenase genes in Cowden and Cowden-like syndromes. Am J Hum Genet. 2008;83(2):261-8. doi: 10.1016/j.ajhg.2008.07.011. [PubMed: 18678321].
  12. Astuti D, Latif F, Dallol A, Dahia PL, Douglas F, George E, et al. Gene mutations in the succinate dehydrogenase subunit SDHB cause susceptibility to familial pheochromocytoma and familial paraganglioma. Am J Hum Genet. 2001;69(1):49-54. doi: 10.1086/321282. [PubMed: 11404820].
  13. Aspuria PJP, Lunt SY, Väremo L, Vergnes L, Gozo M, Beach JA, et al. Succinate dehydrogenase inhibition leads to epithelial-mesenchymal transition and reprogrammed carbon metabolism. Cancer Metab. 2014;2(1):1-15. doi: 10.1186/2049-3002-2-21. [PubMed: 25671108].
  14. Pasini B, Stratakis CA. SDH mutations in tumorigenesis and inherited endocrine tumors: a lesson from the phaeochromocytoma–paraganglioma syndromes. J Intern Med. 2009;266(1):19-42. doi: 10.1111/j.1365-2796.2009.02111.x. [PubMed: 19522823].
  15. Xiao M, Yang H, Xu W, Ma S, Lin H, Zhu H, et al. Inhibition of α-KG-dependent histone and DNA demethylases by fumarate and succinate that are accumulated in mutations of FH and SDH tumor suppressors. Genes Dev. 2012;26(12):1326-38. doi: 10.1101/gad.191056.112. [PubMed: 22677546].
  16. Tavangar SM, Shojaee A, Tabriz HM, Haghpanah V, Larijani B, Heshmat R, et al. Immunohistochemical expression of Ki67, c-erbB-2, and c-kit antigens in benign and malignant pheochromocytoma. Pathol Res Pract. 2010;206(5):305-9. doi: 10.1016/j.prp.2010.01.007. [PubMed: 20189725].
  17. Sarmadi S, Izadi-Mood N, Sotoudeh K, Tavangar SM. Altered PTEN expression; a diagnostic marker for differentiating normal, hyperplastic, and neoplastic endometrium. Diagn Pathol. 2009;4(1):1-6.
  18. Sanii S, Saffar H, Tabriz HM, Qorbani M, Haghpanah V, Tavangar SM. The expression of matrix metalloproteinase-2, but not caspase-3, facilitates the distinction between benign and malignant thyroid follicular neoplasms. Asian Pac J Cancer Prev. 2012;13(5):2175-8.
  19. Hoekstra AS, de Graaff MA, Briaire-de Bruijn IH, Ras C, Seifer RM, van Minderhout I, et al. Inactivation of SDH and FH cause loss of 5hmC and increased H3K9me3 in paraganglioma/pheochromocytoma and smooth muscle tumors. Oncotarget. 2015;6(36):38777-88. doi: 10.18632/oncotarget.6091. [PubMed: 26472283].
  20. Laukka T, Mariani CJ, Ihantola T, Cao JZ, Hokkanen J, Kaelin Jr WG, et al. Fumarate and Succinate Regulate Expression of Hypoxia-inducible Genes via TET Enzymes. J Biol Chem. 2016;291(8):4256-65. doi: 10.1074/jbc.M115.688762. [PubMed: 26703470].
  21. King A, Selak M, Gottlieb E. Succinate dehydrogenase and fumarate hydratase: linking mitochondrial dysfunction and cancer. Oncogene. 2006;25(34):4675-82. doi: 10.1038/sj.onc.1209594. [PubMed: 16892081].
  22. Corrado M, Scorrano L, Campello S. Changing perspective on oncometabolite: from the metabolic signature of cancer to tumorigenic and immunosuppressive agents. Oncotarget. 2016;7(29):46692-706. doi: 10.18632/oncotarget.8727. [PubMed: 27083002].
  23. Her YF, Maher LJ. Succinate dehydrogenase loss in familial paraganglioma: biochemistry, genetics, and epigenetics. Int J Endocrinol. 2015;2015:1-14. doi: 10.1155/2015/296167. [PubMed: 26294907].
  24. Jochmanova I, Pacak K. Genomic landscape of pheochromocytoma and paraganglioma. Trends Cancer. 2018;4(1):6-9. doi: 10.1016/j.trecan.2017.11.001. [PubMed: 29413423].
  25. Fuhler GM, Eppinga H, Peppelenbosch MP. Fumarates and cancer. Trends Mol Med. 2017;23(1):3-5. doi: 10.1016/j.molmed.2016.12.001. [PubMed: 27986420].
  26. Khatami F, Larijani B, Heshmat R, Keshtkar A, Mohammadamoli M, Teimoori-Toolabi L, et al. Meta-analysis of promoter methylation in eight tumor-suppressor genes and its association with the risk of thyroid cancer. Plos One. 2017;12(9):1-6. doi: 10.1371/journal.pone.0184892.
  27. Khatami F, Tavangar M. Genetic and epigenetic of medullary thyroid cancer. Iran Biomed J. 2018;22(3):142-50. doi: 10.22034/ibj.22.3.142. [PubMed: 29126344].
  28. Khatami F, Mohammadamoli M, Tavangar SM. Genetic and epigenetic differences of benign and malignant pheochromocytomas and paragangliomas (PPGLs). Endocr Regul. 2018;52(1):41-54. doi: 10.2478/enr-2018-0006. [PubMed: 29453919].
  29. Sciacovelli M, Frezza C. Oncometabolites: Unconventional triggers of oncogenic signaling cascades. Free Radic Biol Med. 2016;100:175-81. doi: 10.1016/j.freeradbiomed.2016.04.025. [PubMed: 27117029].
  30. Frezza C, Pollard PJ, Gottlieb E. Inborn and acquired metabolic defects in cancer. J Mol Med (Berl). 2011;89(3):213-20. doi: 10.1007/s00109-011-0728-4. [PubMed: 21301796].
  31. Ward PS, Thompson CB. Metabolic reprogramming: a cancer hallmark even Warburg did not anticipate. Cancer cell. 2012;21(3):297-308. doi: 10.1016/j.ccr.2012.02.014. [PubMed: 22439925].
  32. Selak MA, Armour SM, MacKenzie ED, Boulahbel H, Watson DG, Mansfield KD, et al. Succinate links TCA cycle dysfunction to oncogenesis by inhibiting HIF-α prolyl hydroxylase. Cancer cell. 2005;7(1):77-85. doi: 10.1016/j.ccr.2004.11.022.
  33. Favier J, Brière JJ, Strompf L, Amar L, Filali M, Jeunemaitre X, et al. Hereditary paraganglioma/pheochromocytoma and inherited succinate dehydrogenase deficiency. Horm Res. 2005;63(4):171-9. doi: 10.1159/000084685. [PubMed: 15795514].
  34. Guzzo G, Sciacovelli M, Bernardi P, Rasola A. Inhibition of succinate dehydrogenase by the mitochondrial chaperone TRAP1 has anti-oxidant and anti-apoptotic effects on tumor cells. Oncotarget. 2014;5(23):11897-908. doi: 10.18632/oncotarget.2472. [PubMed: 25564869].
  35. Jiang S, Yan W. Succinate in the cancer-immune cycle. Cancer Lett. 2017;390:45-7. doi: 10.1016/j.canlet.2017.01.019. [PubMed: 28109906].
  36. Mills E, O'Neill LA. Succinate: a metabolic signal in inflammation. Trends Cell Biol. 2014;24(5):313-20. doi: 10.1016/j.tcb.2013.11.008. [PubMed: 24361092].
  37. Yang M, Soga T, Pollard PJ. Oncometabolites: linking altered metabolism with cancer. J Clin Invest. 2013;123(9):3652-8. doi: 10.1172/JCI67228. [PubMed: 23999438].
  38. DeBerardinis RJ, Chandel NS. Fundamentals of cancer metabolism. Sci Adv. 2016;2(5):1-18. doi: 10.1126/sciadv.1600200. [PubMed: 27386546].
  39. Morin A, Letouze E, Gimenez‐Roqueplo AP, Favier J. Oncometabolites‐driven tumorigenesis: from genetics to targeted therapy. Int J Cancer. 2014;135(10):2237-48. doi: 10.1002/ijc.29080. [PubMed: 25124653].
  40. Brière JJ, Favier J, Ghouzzi VE, Djouadi F, Benit P, Gimenez AP, et al. Succinate dehydrogenase deficiency in human. Cell Mol Life Sci. 2005;62(19-20):2317-24.
  41. Mu X, Zhao T, Xu C, Shi W, Geng B, Shen J, et al. Oncometabolite succinate promotes angiogenesis by upregulating VEGF expression through GPR91-mediated STAT3 and ERK activation. Oncotarget. 2017;8(8):13174-85. doi: 10.18632/oncotarget.14485. [PubMed: 28061458].
  42. Nowicki S, Gottlieb E. Oncometabolites: tailoring our genes. FEBS J. 2015;282(15):2796-805. doi: 10.1111/febs.13295. [PubMed: 25864878].
  43. Nam H, Campodonico M, Bordbar A, Hyduke DR, Kim S, Zielinski DC, et al. A systems approach to predict oncometabolite via context-specific genome-scale metabolic networks. PLoS Comput Biol. 2014;10(9):1-13. doi: 10.1371/journal.pcbi.1003837. [PubMed: 25232952].
  44. Zhou Z, Ibekwe E, Chornenkyy Y. Metabolic alterations in cancer cells and the emerging role of oncometabolite as drivers of neoplastic change. Antioxidants. 2018;7(1):1-18. doi: 10.3390/antiox7010016. [PubMed: 29342092].
  45. Larijani B, Shirzad M, Mohagheghi M, Haghpanah V, Mosavi-Jarrahi A, Tavangar S, et al. Epidemiologic analysis of the Tehran cancer institute data system registry (TCIDSR). Asian Pac J Cancer Prev. 2004;5(1):36-9. [PubMed: 15075002].
  46. Larijani B, Mohagheghi MA, Bastanhagh MH, Mosavi-Jarrahi AR, Haghpanah V, Tavangar SM, et al. Primary thyroid malignancies in Tehran, Iran. Med Princ Pract. 2005;14(6):396-400.
  47. Haghpanah V, Soliemanpour B, Heshmat R, Mosavi-Jarrahi A, Tavangar S, Malekzadeh R, et al. Endocrine cancer in Iran: based on cancer registry system. Indian J Cancer. 2006;43(2):80-5. doi: 10.4103/0019-509x.25889. [PubMed: 16790945].
  48. Le A, Lane AN, Hamaker M, Bose S, Gouw A, Barbi J, et al. Glucose-independent glutamine metabolism via TCA cycling for proliferation and survival in B cells. Cell Metab. 2012;15(1):110-21. doi: 10.1016/j.cmet.2011.12.009. [PubMed: 22225880].
  49. Raimundo N, Baysal BE, Shadel GS. Revisiting the TCA cycle: signaling to tumor formation. Trends Mol Med. 2011;17(11):641-9. doi: 10.1016/j.molmed.2011.06.001. [PubMed: 21764377].
  50. Khatami F, Tavangar M. A Review of driver genetic alterations in Thyroid Cancers. Iran J Pathol. 2018;13(2):125-35. [PubMed: 30697281].
  51. Yang M, Pollard PJ. Succinate: a new epigenetic hacker. Cancer cell. 2013;23(6):709-11. doi: 10.1016/j.ccr.2013.05.015. [PubMed: 23763995].
  52. Tabebi M, Soderkvist P, Jensen LD. Hypoxia Signaling and Circadian Disruption in and by Pheochromocytoma. Front Endocrinol (Lausanne). 2018;9:1-8. doi: 10.3389/fendo.2018.00612. [PubMed: 30386298].
  53. Killian JK, Kim SY, Miettinen M, Smith C, Merino M, Tsokos M, et al. Succinate dehydrogenase mutation underlies global epigenomic divergence in the gastrointestinal stromal tumor. Cancer Discov. 2013;3(6):648-57. doi: 10.1158/2159-8290.CD-13-0092. [PubMed: 23550148].
  54. Haghpanah V, Shooshtarizadeh P, Heshmat R, Larijani B, Tavangar SM. Immunohistochemical analysis of survivin expression in thyroid follicular adenoma and carcinoma. Appl Immunohistochem Mol Morphol. 2006;14(4):422-5. doi: 10.1097/01.pai.0000213100.88074.b8. [PubMed: 17122639].
  55. Janin M, Esteller M. Oncometabolite accumulation and epithelial-to-mesenchymal transition: Cell Metab. 2016;24(4):529-30. doi: 10.1016/j.cmet.2016.09.020. [PubMed: 27732835].
  56. Kitazawa S, Ebara S, Ando A, Baba Y, Satomi Y, Soga T, et al. Succinate dehydrogenase B-deficient cancer cells are highly sensitive to bromodomain and extra-terminal inhibitors. Oncotarget. 2017;8(17):28922-38. doi: 10.18632/oncotarget.15959. [PubMed: 28423651].
  57. Larijani B, Tavangar S, Bandarian F. Squamous cell carcinoma arising in a chronic, nonhealing diabetic foot ulcer. Wounds. 2017;29(7):48-50. [PubMed: 28759430].
  58. Tavangar SM, Larijani B, Mahta A, Hosseini MA, Mehrazine M, Bandarian F. Craniopharyngioma: a clinicopathological study of 141 cases. Endocr Pathol. 2004;15(4):339-44. doi: 10.1385/ep:15:4:339. [PubMed: 15681858].
  59. Gill AJ, Toon CW, Clarkson A, Sioson L, Chou A, Winship I, et al. Succinate dehydrogenase deficiency is rare in pituitary adenomas. Am J Surg Pathol. 2014;38(4):1-7. doi: 10.1097/PAS.0000000000000149. [PubMed: 24625421].
  60. Zhao T, Mu X, You Q. Succinate: an initiator in tumorigenesis and progression. Oncotarget. 2017;8(32):53819-28. doi: 10.18632/oncotarget.17734. [PubMed: 28881853].
  61. MacKenzie ED, Selak MA, Tennant DA, Payne LJ, Crosby S, Frederiksen CM, et al. Cell-permeating α-ketoglutarate derivatives alleviate pseudohypoxia in succinate dehydrogenase-deficient cells. Mol Cell Biol. 2007;27(9):3282-9. doi: 10.1128/MCB.01927-06. [PubMed: 17325041].
  62. Pollard P, Wortham N, Tomlinson I. The TCA cycle and tumorigenesis: the examples of fumarate hydratase and succinate dehydrogenase. Ann Med. 2003;35(8):634-5. doi: 10.1080/07853890310018458. [PubMed: 14708972].
  63. Gill AJ. Succinate dehydrogenase (SDH) and mitochondrial-driven neoplasia. Pathology. 2012;44(4):285-92. doi: 10.1097/PAT.0b013e3283539932. [PubMed: 22544211].
  64. Gill AJ, Hes O, Papathomas T, Šedivcova M, Tan PH, Agaimy A, et al. Succinate dehydrogenase (SDH)-deficient renal carcinoma: a morphologically distinct entity: a clinicopathologic series of 36 tumors from 27 patients. Am J Surg Pathol. 2014;38(12):1588-602. doi: 10.1097/PAS.0000000000000292. [PubMed: 25025441].
  65. Dahia PL, Ross KN, Wright ME, Hayashida CY, Santagata S, Barontini M, et al. A HIF1α regulatory loop links hypoxia and mitochondrial signals in pheochromocytomas. PLoS Genet. 2005;1(1):72-80. doi: 10.1371/journal.pgen.0010008. [PubMed: 16103922].
  66. Lodish MB, Adams KT, Huynh TT, Prodanov T, Ling A, Chen C, et al. Succinate dehydrogenase gene mutations are strongly associated with paraganglioma of the organ of Zuckerkandl. Endocr Relat Cancer. 2010;17(3):581-8. doi: 10.1677/ERC-10-0004. [PubMed: 20418362].
  67. Saffar H, Sanii S, Heshmat R, Haghpanah V, Larijani B, Rajabiani A, et al. Expression of galectin-3, nm-23, and cyclooxygenase-2 could potentially discriminate between benign and malignant pheochromocytoma. Am J Clin Pathol. 2011;135(3):454-60. doi: 10.1309/AJCPI8AJLUZ3CZLN.
  68. Khatami F, Tavangar M. The current diagnostic status of pheochromocytoma and future perspective: A mini-review. Iran J Pathol. 2017;12(3):313-22. [PubMed: 29531562].
  69. Havekes B, Corssmit E, Jansen J, van der Mey A, Vriends A, Romijn J. Malignant paragangliomas associated with mutations in the succinate dehydrogenase D gene. J Clin Endocrinol Metab. 2007;92(4):1245-8. doi: 10.1210/jc.2006-1993. [PubMed: 17227803].
  70. Zelinka T, Timmers HJ, Kozupa A, Chen CC, Carrasquillo JA, Reynolds JC, et al. Role of positron emission tomography and bone scintigraphy in the evaluation of bone involvement in metastatic pheochromocytoma and paraganglioma: specific implications for succinate dehydrogenase enzyme subunit B gene mutations. Endocr Relat Cancer. 2008;15(1):311-23. doi: 10.1677/ERC-07-0217. [PubMed: 18310297].
  71. Kodama H, Iihara M, Nissato S, Isobe K, Kawakami Y, Okamoto T, et al. A large deletion in the succinate dehydrogenase B gene (SDHB) in a Japanese patient with abdominal paraganglioma and concomitant metastasis. Endocr J. 2010;57(4):351-6. doi: 10.1507/endocrj.k09e-324. [PubMed: 20379037].
  72. Canu L, Pradella S, Rapizzi E, Fucci R, Valeri A, Briganti V, et al. Sunitinib in the therapy of malignant paragangliomas: report on the efficacy in an SDHB mutation carrier and review of the literature. Arch Endocrinol Metab. 2017;61(1):90-7. doi: 10.1590/2359-3997000000217. [PubMed: 27737332].
  73. Janeway K, Kim S, Lodish M, Nose V, Dahia P, Rustin P, et al. Succinate dehydrogenase in KIT/PDGFRA wild-type gastrointestinal stromal tumors. Journal of Clinical Oncology. 2010;28(15):10008. doi: 10.1200/jco.2010.28.15_suppl.10008.
  74. Rubin BP, Heinrich MC. Genotyping and immunohistochemistry of gastrointestinal stromal tumors: an update. Semin Diagn Pathol. 2015;32(5):392-9. doi: 10.1053/j.semdp.2015.02.017. [PubMed: 25766843].
  75. Tsang V, Dwight T, Benn DE, Meyer-Rochow GY, Gill A, Sywak M, et al. Overexpression of miR-210 is associated with SDH-related pheochromocytomas, paragangliomas, and gastrointestinal stromal tumors. Endocr Relat Cancer. 2014;21(3):415-26. doi: 10.1530/ERC-13-0519. [PubMed: 24623741].
  76. Pantaleo MA, Nannini M, Corless CL, Heinrich MC. Quadruple wild‐type (WT) GIST: defining the subset of GIST that lacks abnormalities of KIT, PDGFRA, SDH, or RAS signaling pathways. Cancer Med. 2015;4(1):101-3. doi: 10.1002/cam4.325. [PubMed: 25165019].
  77. Miettinen M, Killian JK, Wang ZF, Lasota J, Lau C, Jones L, et al. Immunohistochemical loss of succinate dehydrogenase subunit A (SDHA) in gastrointestinal stromal tumors (GISTs) signals SDHA germline mutation. Am J Surg Pathol. 2013;37(2):234-40. doi: 10.1097/PAS.0b013e3182671178. [PubMed: 23282968].
  78. Killian JK, Miettinen M, Walker RL, Wang Y, Zhu YJ, Waterfall JJ, et al. Recurrent epimutation of SDHC in gastrointestinal stromal tumors. Sci Transl Med. 2014;6(268):1-21. doi: 10.1126/scitranslmed.3009961. [PubMed: 25540324].
  79. Nannini M, Astolfi A, Urbini M, Indio V, Santini D, Heinrich MC, et al. Integrated genomic study of quadruple-WT GIST (KIT/PDGFRA/SDH/RAS pathway wild-type GIST). BMC Cancer. 2014;14(1):1-12. doi: 10.1186/1471-2407-14-685. [PubMed: 25239601].
  80. Miettinen M, Lasota J. Succinate dehydrogenase deficient gastrointestinal stromal tumors (GISTs)–A review. Int J Biochem Cell Biol. 2014;53:514-9. doi: 10.1016/j.biocel.2014.05.033. [PubMed: 24886695].
  81. Pantaleo MA, Lolli C, Nannini M, Astolfi A, Indio V, Saponara M, et al. Good survival outcome of metastatic SDH-deficient gastrointestinal stromal tumors harboring SDHA mutations. Genet Med. 2014;17(5):391-5. doi: 10.1038/gim.2014.115. [PubMed: 25188872].
  82. Sudarshan S, Pinto PA, Neckers L, Linehan WM. Mechanisms of disease: hereditary leiomyomatosis and renal cell cancer—a distinct form of hereditary kidney cancer. Nat Rev Urol. 2007;4(2):104. doi: 10.1038/ncpuro0711.
  83. Gill AJ. Succinate dehydrogenase (SDH)-deficient neoplasia. Histopathology. 2018;72(1):106-16. doi: 10.1111/his.13277. [PubMed: 29239034].
  84. Moch H, Cubilla AL, Humphrey PA, Reuter VE, Ulbright TM. 2016 WHO classification of tumors of the urinary system and male genital organs—part A: renal, penile, and testicular tumors. Eur Urol. 2016;70(1):93-105.
  85. Wang G, Rao P. Succinate Dehydrogenase-Deficient Renal Cell Carcinoma: A Short Review. Arch Pathol Lab Med. 2018;142(10):1284-8. doi: 10.5858/arpa.2017-0199-RS. [PubMed: 30281364].
  86. Williamson SR, Eble JN, Amin MB, Gupta NS, Smith SC, Sholl LM, et al. Succinate dehydrogenase-deficient renal cell carcinoma: detailed characterization of 11 tumors defining a unique subtype of renal cell carcinoma. Mod Pathol. 2015;28(1):80-94. doi: 10.1038/modpathol.2014.86. [PubMed: 25034258].
  87. Kuroda N, Yorita K, Nagasaki M, Harada Y, Ohe C, Jeruc J, et al. Review of succinate dehydrogenase-deficient renal cell carcinoma with focus on clinical and pathobiological aspects. Pol J Patho. 2016;67(1):3-7. doi: 10.5114/pjp.2016.59227. [PubMed: 27179267].
  88. Ricketts CJ, Shuch B, Vocke CD, Metwalli AR, Bratslavsky G, Middelton L, et al. Succinate dehydrogenase kidney cancer: an aggressive example of the Warburg effect in cancer. J Urol. 2012;188(6):2063-71. doi: 10.1016/j.juro.2012.08.030. [PubMed: 23083876].
  89. Vanharanta S, Buchta M, McWhinney SR, Virta SK, Peçzkowska M, Morrison CD, et al. Early-onset renal cell carcinoma as a novel extraparaganglial component of SDHB-associated heritable paraganglioma. Am J Hum Genet. 2004;74(1):153-9. doi: 10.1086/381054. [PubMed: 14685938].
  90. Stanley K, Friehling E, Davis A, Ranganathan S. Succinate Dehydrogenase-Deficient Gastrointestinal Stromal Tumor With SDHC Germline Mutation and Bilateral Renal and Neck Cysts. Pediatr Dev Pathol. 2019;22(3):265-8. doi: 10.1177/1093526618805354. [PubMed: 30301441].
  91. Sabetkish S, Kajbafzadeh AM, Sabetkish N, Khorramirouz R, Akbarzadeh A, Seyedian SL, et al. Whole‐organ tissue engineering: decellularization and recellularization of three‐dimensional matrix liver scaffolds. J Biomed Mater Res A. 2015;103(4):1498-508. doi: 10.1002/jbm.a.35291. [PubMed: 25045886].
  92. Huang Y, Wang LA, Xie Q, Pang J, Wang L, Yi Y, et al. Germline SDHB and SDHD mutations in pheochromocytoma and paraganglioma patients. Endocr Connect. 2018;7(12):1217-25. doi: 10.1530/EC-18-0325. [PubMed: 30352407].
  93. Menendez JA, Alarcon T, Joven J. Gerometabolites: the pseudohypoxic aging side of cancer oncometabolites. Cell Cycle. 2014;13(5):699-709. doi: 10.4161/cc.28079. [PubMed: 24526120].
  94. Lussey-Lepoutre C, Bellucci A, Morin A, Buffet A, Amar L, Janin M, et al. In vivo detection of succinate by magnetic resonance spectroscopy as a hallmark of SDHx mutations in paraganglioma. Clin Cancer Res. 2016;22(5):1120-9. doi: 10.1158/1078-0432.CCR-15-1576. [PubMed: 26490314].
  95. Collins RR, Patel K, Putnam WC, Kapur P, Rakheja D. Oncometabolites: A new paradigm for oncology, metabolism, and the clinical laboratory. Clin Chem. 2017;63(12):1812-20. doi: 10.1373/clinchem.2016.267666. [PubMed: 29038145].
  96. Richter S, Pietzsch M, Rapizzi E, Lenders JW, Qin N, De Cubas AA, et al. Krebs cycle metabolite profiling for identification and stratification of pheochromocytomas/paragangliomas due to succinate dehydrogenase deficiency. J Clin Endocrinol Metab. 2014;99(10):3903-11. doi: 10.1210/jc.2014-2151. [PubMed: 25014000].
  97. Casey RT, McLean MA, Madhu B, Challis BG, Ten Hoopen R, Roberts T, et al. Translating in vivo metabolomic analysis of succinate dehydrogenase–deficient tumors into clinical utility. JCO Precis Oncol. 2018;2:1-12. doi: 10.1200/PO.17.00191. [PubMed: 30949620].
  98. Santagata S, Eberlin LS, Norton I, Calligaris D, Feldman DR, Ide JL, et al. Intraoperative mass spectrometry mapping of an oncometabolite to guide brain tumor surgery. Proc Natl Acad Sci U S A. 2014;111(30):11121-6. doi: 10.1073/pnas.1404724111. [PubMed: 24982150].
  99. Laurenti G, Tennant DA. Isocitrate dehydrogenase (IDH), succinate dehydrogenase (SDH), fumarate hydratase (FH): three players for one phenotype in cancer? Biochem Soc Trans. 2016;44(4):1111-6. doi: 10.1042/BST20160099. [PubMed: 27528759].
  100. Lendvai N, Pawlosky R, Bulova P, Eisenhofer G, Patocs A, Veech RL, et al. Succinate-to-fumarate ratio as a new metabolic marker to detect the presence of SDHB/D-related paraganglioma: initial experimental and ex vivo findings. Endocrinology. 2014;155(1):27-32. doi: 10.1210/en.2013-1549. [PubMed: 24189137].
  101. Tabriz HM, Nazar E, Ahmadi SA, Azimi E, Majidi F. Survivin and Her2 Expressions in different grades of urothelial neoplasms of urinary bladder. Iran J Pathol. 2021;16(2):154-61. doi: 10.30699/IJP.2020.130859.2447. [PubMed: 33936226].
  102. Varoquaux A, le Fur Y, Imperiale A, Reyre A, Montava M, Fakhry N, et al. Magnetic resonance spectroscopy of paragangliomas: new insights into in vivo metabolomics. Endocr Relat Cancer. 2015;22(4): 1-8. doi: 10.1530/ERC-15-0246. [PubMed: 26115958].
  103. Galluzzi L, Kepp O, Vander Heiden MG, Kroemer G. Metabolic targets for cancer therapy. Nat Rev Drug Discov. 2013;12(11):829-46. doi: 10.1038/nrd4145. [PubMed: 24113830].
  104. Bannon A. Translating genetic data into actionable clinical guidelines: succinate dehydrogenase subunit a variants of unknown significance in gastrointestinal Stromal Tumors. [PhD Thesis]. The Department of Cell, Developmental, & Cancer Biology Of the Oregon Health & Science University; 2017.