Document Type : Review articles


1 Department of Medical Genetics, Faculty of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran

2 Hormozgan Institute of Health, Hormozgan University of Medical Sciences, Bandar Abbas, Iran

3 Hematology, Oncology, and Stem Cell Transplantation Research Center, Tehran University of Medical Sciences, Tehran, Iran


Context: Long non-coding RNA (lncRNA) is a novel set of non-coding RNAs (ncRNA), over 200 nucleotides in length, accounting for the regulation of genes and chromosome structure. There are a few articles, mostly focusing on changes in the expression profile of DANCR. However, this review tried to collect documents to discuss the molecular mechanisms of this lncRNA in different cellular signaling pathways, considering microRNAs, to obtain a better understanding of its mode of action.
Evidence Acquisition: Differentiation antagonizing non-protein coding RNA (DANCR) is a cancer-associated lncRNA whose dysregulation, mostly upregulation, has been reported in almost all cancers, particularly in stages of invasion, migration, and progression. The regulatory mechanism of DANCR is mostly working as competitive endogenous RNAs (ceRNAs), leading to the hypothesis that lncRNA DANCR has oncogenic functions in malignancies. LncRNA DANCR harbors a number of MicroRNA Response Elements (MREs) for various microRNAs involved in different pathways, which are responsible for turning the situation toward supremacy for the dissemination of cancerous cells and ultimately metastasis, such as PI3K/Akt, TGF-?, Wnt, JAK-STAT, EMT, and DNA damages. In fact, lncRNA DANCR could potentially sequester microRNAs from their targeted mRNAs, which share the same MREs as DANCR.
Conclusion: This review article provides proper evidence, of why the aberrant expression of DANCR pathophysiologically turns the circumstances toward supremacy for the progression, migration, and invasion of cancerous cells, and proposes this lncRNA as a potent and extremely promising prognostic marker for the early detection of tumor progression and metastasis, as well as a therapeutic target for controlling the progression of several human malignancies.


  1. Djebali S, Davis CA, Merkel A, Dobin A, Lassmann T, Mortazavi A, et al. Landscape of transcription in human cells. Nature. 2012;489(7414):101-8. doi: 10.1038/nature11233. [PubMed: 22955620].
  2. Lee JT. Epigenetic regulation by long noncoding RNAs. Science. 2012;338(6113):1435-9. doi: 10.1126/science.1231776. [PubMed: 23239728].
  3. Zhu S, Li W, Liu J, Chen CH, Liao Q, Xu P, et al. 2016; Genome-scale deletion screening of human long non-coding RNAs using a paired-guide RNA CRISPR–Cas9 library. Nat Biotechnol. 2016;34(12):1279-86. doi: 10.1038/nbt.3715. [PubMed: 27798563].
  4. Kambara H, Niazi F, Kostadinova L, Moonka DK, Siegel CT, Post AB, et al. Negative regulation of the interferon response by an interferon-induced long non-coding RNA. Nucleic Acids Res. 2014;42(16):10668-80. doi: 10.1093/nar/gku713. [PubMed: 25122750].
  5. Li Z, Shen J, Chan MT, Wu WKK. TUG 1: a pivotal oncogenic long non‐coding RNA of human cancers. Cell Prolif. 2016;49(4):471-5. doi: 10.1111/cpr.12269. [PubMed: 27339553].
  6. Jiang X, Ma N, Wang D, Li F, He R, Li D, et al. Metformin inhibits tumor growth by regulating multiple miRNAs in human cholangiocarcinoma. Oncotarget. 2015;6(5):3178-94. doi: 10.18632/oncotarget.3063. [PubMed: 25605008].
  7. Vance KW, Sansom SN, Lee S, Chalei V, Kong L, Cooper SE, et al. The long non‐coding RNA Paupar regulates the expression of both local and distal genes. EMBO J. 2014;33(4):296-311. Doi: 10.1002/embj.201386225. [PubMed: 24488179].
  8. Huang B, Song JH, Cheng Y, Abraham JM, Ibrahim S, Sun Z, et al. Long non-coding antisense RNA KRT7-AS is activated in gastric cancers and supports cancer cell progression by increasing KRT7 expression. Oncogene. 2016;35(37):4927-36. doi: 10.1038/onc.2016.25. [PubMed: 26876208].
  9. Bolha L, Ravnik-Glavač M, Glavač D. Long noncoding RNAs as biomarkers in cancer. Dis Markers. 2017;2017:7243968. doi: 10.1155/2017/7243968. [PubMed: 28634418].
  10. Derrien T, Johnson R, Bussotti G, Tanzer A, Djebali S, Tilgner H, et al. The GENCODE v7 catalog of human long noncoding RNAs: analysis of their gene structure, evolution, and expression. Genome Res. 2012;22(9):1775-89. doi: 10.1101/gr.132159.111. [PubMed: 22955988].
  11. Ponting CP, Oliver PL, Reik W. Evolution and functions of long noncoding RNAs. Cell. 2009;136(4):629-41. doi: 10.1016/j.cell.2009.02.006. [PubMed: 19239885].
  12. Shi T, Gao G, Cao Y. Long noncoding RNAs as novel biomarkers have a promising future in cancer diagnostics. Dis Markers. 2016;2016:9085195. doi: 10.1155/2016/9085195. [PubMed: 27143813].
  13. Shao Y, Ye M, Jiang X, Sun W, Ding X, Liu Z, et al. Gastric juice long noncoding RNA used as a tumor marker for screening gastric cancer. Cancer. 2014;120(21):3320-8. doi: 10.1002/cncr.28882. [PubMed: 24986041].
  14. Silva A, Bullock M, Calin G. The clinical relevance of long non-coding RNAs in cancer. Cancers. 2015;7(4):2169-82. doi: 10.3390/cancers7040884. [PubMed: 26516918].
  15. Cheetham S, Gruhl F, Mattick J, Dinger M. Long noncoding RNAs and the genetics of cancer. Br J Cancer. 2013;108 (12):2419-25. doi: 10.1038/bjc.2013.233. [PubMed: 23660942].
  16. Yuan SX, Wang J, Yang F, Tao QF, Zhang J, Wang LL, et a1. Long noncoding RNA DANCR increases stemness features of hepatocellular carcinoma by derepression of CTNNB1. Hepatology. 2016;63(2):499-511. doi: 10.1002/hep.27893. [PubMed: 25964079].
  17. Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell. 2004;116(2):281-97. doi: 10.1016/s0092-8674(04)00045-5. [PubMed: 14744438].
  18. Zhou RS, Zhang EX, Sun QF, Ye ZJ, Liu JW, Zhou DH, et al. Integrated analysis of lncRNA-miRNA-mRNA ceRNA network in squamous cell carcinoma of tongue. BMC Cancer. 2019;19(1):779. doi: 10.1186/s12885-019-5983-8. [PubMed: 31391008].
  19. Invernizzi F, Viganò M, Grossi G, Lampertico P. The prognosis and management of inactive HBV carriers. Liver Int. 2016;36:100-4. doi: 10.1111/liv.13006. [PubMed: 26725905].
  20. Schwartz M, Roayaie S, Konstadoulakis M. Strategies for the management of hepatocellular carcinoma. Nat Clin Pract Oncol. 2007;4(7):424-32. doi: 10.1038/ncponc0844. [PubMed: 17597707].
  21. El-Serag HB, Marrero JA, Rudolph L, Reddy KR. Diagnosis and treatment of hepatocellular carcinoma. Gastroenterology. 2008;134(6):1752-63. doi: 10.1053/j.gastro.2008.02.090. [PubMed: 18471552].
  22. Blum HE. Hepatocellular carcinoma: therapy and prevention. World J Gastroenterol. 2005;11(47):7391-400. doi: 10.3748/wjg.v11.i47.7391. [PubMed: 16437707].
  23. Ma X, Wang X, Yang C, Wang Z, Han B, Wu L, et al. DANCR acts as a diagnostic biomarker and promotes tumor growth and metastasis in hepatocellular carcinoma. Anticancer Res. 2016;36(12):6389-98. doi: 10.21873/anticanres.11236. [PubMed: 27919960].
  24. Mo Y, Wang Y, Zhang L, Yang L, Zhou M, Li X, et al. The role of Wnt signaling pathway in tumor metabolic reprogramming.
  25. J Cancer. 2019;10(16):3789-97. doi: 10.7150/jca.31166. [PubMed: 31333796].
  26. Liu Y, Chen L, Yuan H, Guo S, Wu G. LncRNA DANCR Promotes Sorafenib Resistance via Activation of IL-6/STAT3 Signaling in Hepatocellular Carcinoma Cells. Onco Targets Ther. 2020;13:1145-57. doi: 10.2147/OTT.S229957. [PubMed: 32103983].
  27. Wang J, Pu J, Zhang Y, Yao T, Luo Z, Li W, et al. DANCR contributed to hepatocellular carcinoma malignancy via sponging miR‐216a‐5p and modulating KLF12. J Cell Physiol. 2019;234(6):9408-16. doi: 10.1002/jcp.27625.
  28. Khan AP, Rajendiran TM, Ateeq B, Asangani IA, Athanikar JN, Yocum AK, et al. The role of sarcosine metabolism in prostate cancer progression. Neoplasia. 2013;15(5):491-501. doi: 10.1593/neo.13314. [PubMed: 23633921].
  29. Costello LC, Franklin RB. The clinical relevance of the metabolism of prostate cancer; zinc and tumor suppression: connecting the dots. Mol Cancer. 2006;5(1):17. doi: 10.1186/1476-4598-5-17. [PubMed: 16700911].
  30. Sadeghi RN, Karami-Tehrani F, Salami S. Targeting prostate cancer cell metabolism: impact of hexokinase and CPT-1 enzymes. Tumour Biol. 2015;36(4):2893-905. doi: 10.1007/s13277-014-2919-4. [PubMed: 25501281].
  31. Sahra IB, Laurent K, Giuliano S, Larbret F, Ponzio G, Gounon P, et al. Targeting cancer cell metabolism: the combination of metformin and 2-deoxyglucose induces p53-dependent apoptosis in prostate cancer cells. Cancer Res. 2010;70(6):2465-75. doi: 10.1158/0008-5472.CAN-09-2782. [PubMed: 20215500].
  32. Jia J, Li F, Tang XS, Xu S, Gao Y, Shi Q, et al. Long noncoding RNA DANCR promotes invasion of prostate cancer through epigenetically silencing expression of TIMP2/3. Oncotarget. 2016;7(25):37868-81. doi: 10.18632/oncotarget.9350. [PubMed: 27191265].
  33. Zhang L, Sun X, Chen S, Yang C, Shi B, Zhou L, et al. Long noncoding RNA DANCR regulates miR-1305-Smad 4 axis to promote chondrogenic differentiation of human synovium-derived mesenchymal stem cells. Biosci Rep. 2017;37(4). doi: 10.1042/BSR20170347. [PubMed: 28674107].
  34. Zhao HF, Zhang ZC, Shi BK, Jiang XZ. DANCR sponges miR-135a to regulate paclitaxel sensitivity in prostate cancer. Eur Rev Med Pharmacol Sci. 2019;23(16):6849-57.
  35. Deng H, Zhu B, Dong Z, Jiang H, Zhao X, Wu S. miR-214-5p targeted by LncRNA DANCR mediates TGF-β signaling pathway to accelerate proliferation, migration and inhibit apoptosis of prostate cancer cells. Am J Transl Res. 2021;13(4):2224-40. [PubMed: 34017385].
  36. Ma Y, Fan B, Ren Z, Liu B, Wang Y. Long noncoding RNA DANCR contributes to docetaxel resistance in prostate cancer through targeting the miR-34a-5p/JAG1 pathway. Onco Targets Ther. 2019;12:5485-97. doi: 10.2147/OTT.S197009. [PubMed: 31371987].
  37. Sun W, Zu S, Shao G, Wang W, Gong F. Long non‐coding DANCR targets miR‐185‐5p to upregulate LIM and SH3 protein 1 promoting prostate cancer via the FAK/PI3K/AKT/GSK3β/snail pathway. J Gene Med. 2021;23(7):e3344. doi: 10.1002/jgm.3344. [PubMed: 33885171].
  38. Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D. Global cancer statistics. CA Cancer J Clin. 2011;61(2):69-90. doi: 10.3322/caac.20107. [PubMed: 21296855].
  39. Liu W, Schaffer L, Herrs N, Chollet C, Taylor S. Improved sleep after Qigong exercise in breast cancer survivors: A pilot study. Asia Pac J Oncol Nurs. 2015;2(4):232-9. doi: 10.4103/2347-5625.170537. [PubMed: 27981118].
  40. Kam J, Kam J, Mann GB, Phillips C, Wentworth JM, King J, et al. Solitary pituitary metastasis from HER2‐positive breast
  41. cancer. Asia Pac J Clin Oncol. 2017;13(2):181-4. doi: 10.1111/ajco.12353. [PubMed: 25869477].
  42. Droog M, Nevedomskaya E, Kim Y, Severson T, Flach KD, Opdam M, et al. Comparative cistromics reveals genomic cross-talk between FOXA1 and ERα in tamoxifen-associated endometrial carcinomas. Cancer Res. 2016;76(13):3773-84. doi: 10.1158/0008-5472.CAN-14-1813. [PubMed: 27197147].
  43. Sha S, Yuan D, Liu Y, Han B, Zhong N. Targeting long non-coding RNA DANCR inhibits triple negative breast cancer progression. Biol Open. 2017;6(9):1310-6. doi: 10.1242/bio.023135. [PubMed: 28760736].
  44. Mao Z, Li H, Du B, Cui K, Xing Y, Zhao X, et al. LncRNA DANCR promotes migration and invasion through suppression of lncRNA-LET in gastric cancer cells. Biosci Rep. 2017;37(6). doi: 10.1042/BSR20171070. [PubMed: 28951520].
  45. Zhang KJ, Tan XL, Guo L. The long non‐coding RNA DANCR regulates the inflammatory phenotype of breast cancer cells and promotes breast cancer progression via EZH2‐dependent suppression of SOCS3 transcription. Mol Oncol. 2020;
  46. (2):309-28. doi: 10.1002/1878-0261.12622. [PubMed: 31860165].
  47. Tao W, Wang C, Zhu B, Zhang G, Pang D. LncRNA DANCR contributes to tumor progression via targetting miR-216a-5p in breast cancer: lncRNA DANCR contributes to tumor progression. Biosci Rep. 2019;39(4). doi: 10.1042/BSR20181618. [PubMed: 30910842].
  48. Jia H, Liang K, Liu G, Zhang Z, Shi Y, Liang H, et al. lncRNA DANCR promotes proliferation and metastasis of breast cancer cells through sponging miR-4319 and upregulating VAPB. Cancer Biother Radiopharm. 2022;37(8):650-61. doi: 10.1089/cbr.2020.3675. [PubMed: 32818383].
  49. Zhang XH, Li BF, Ding J, Shi L, Ren HM, Liu K, et al. LncRNA DANCR-miR-758-3p-PAX6 molecular network regulates apoptosis and autophagy of breast cancer cells. Cancer Manag Res. 2020;12:4073-84. doi: 10.2147/CMAR.S254069. [PubMed: 32581581].
  50. Wu G, Zhou H, Li D, Zhi Y, Liu Y, Li J, et al. LncRNA DANCR upregulation induced by TUFT1 promotes malignant progression in triple negative breast cancer via miR-874-3p-SOX2 axis. Exp Cell Res. 2020;396(2):112331. doi: 10.1016/j.yexcr.2020.112331. [PubMed: 33058834].
  51. Zhang K, Shi H, Xi H, Wu X, Cui J, Gao Y, et al. Genome-wide lncRNA microarray profiling identifies novel circulating lncRNAs for detection of gastric cancer. Theranostics. 2017;7(1):213-27. doi: 10.7150/thno.16044. [PubMed: 28042329].
  52. Hao YP, Qiu JH, Zhang DB, Yu CG. Long non-coding RNA DANCR, a prognostic indicator, promotes cell growth and tumorigenicity in gastric cancer. Tumour Biol. 2017;39(6). doi: 10.1177/1010428317699798. [PubMed: 28618943].
  53. Pan L, Liang W, Gu J, Zang X, Huang Z, Shi H, et al. Long noncoding RNA DANCR is activated by SALL4 and promotes the proliferation and invasion of gastric cancer cells. Oncotarget. 2018;9(2):1915-30. doi: 10.18632/oncotarget.23019. [PubMed: 29416741].
  54. Cheng Z, Liu G, Huang C, Zhao X. KLF5 activates lncRNA DANCR and inhibits cancer cell autophagy accelerating gastric cancer progression. NPJ Genom Med. 2021;6(1):75. Doi: 10.1038/s41525-021-00207-7. [PubMed: 34548487].
  55. Xin Y, Li Z, Shen J, Chan MT, Wu WK. CCAT 1: a pivotal oncogenic long non‐coding RNA in human cancers. Cell Prolif. 2016;49(3):255-60. doi: 10.1111/cpr.12252. [PubMed: 27134049].
  56. Kong J, Sun W, Li C, Wan L, Wang S, Wu Y, et al. Long non-coding RNA LINC01133 inhibits epithelial–mesenchymal transition and metastasis in colorectal cancer by interacting with SRSF6. Cancer Lett. 2016;380(2):476-84. doi: 10.1016/j.canlet.2016.07.015. [PubMed: 27443606].
  57. Rafat M, Moraghebi M, Afsa M, Malekzadeh K. The outstanding role of miR-132-3p in carcinogenesis of solid tumors. Hum Cell. 2021;34(4):1051-65. doi: 10.1007/s13577-021-00544-w. [PubMed: 33997944].
  58. Liu Y, Zhang M, Liang L, Li J, Chen YX. Over-expression of lncRNA DANCR is associated with advanced tumor progression and poor prognosis in patients with colorectal cancer. Int J Clin Exp Pathol. 2015;8(9):11480-4. [PubMed: 26617879].
  59. Wang Y, Lu Z, Wang N, Feng J, Zhang J, Luan L, et al. Long noncoding RNA DANCR promotes colorectal cancer proliferation and metastasis via miR-577 sponging. Exp Mol Med. 2018;50(5):1-7. [PubMed: 29717105].
  60. Yang XJ, Zhao JJ, Chen WJ, Zhang GG, Wang W, Tao HC. Silencing long non coding RNA, differentiation antagonizing non protein coding RNA promotes apoptosis and inhibits tumor growth in colon cancer. Oncol Lett. 2018;16(3):2865-72. doi: 10.3892/ol.2018.9034. [PubMed: 30127873].
  61. Xie W, Zhang Y, Wang B, Hu Y, Zhan B, Wei F, et al. Tripartite motif containing 24 regulates cell proliferation in colorectal cancer through YAP signaling. Cancer Med. 2020;9(17):6367-76. doi: 10.1002/cam4.3310. [PubMed: 32677374].
  62. Sun Y, Cao B, Zhou J. Roles of DANCR/microRNA-518a-3p/MDMA ceRNA network in the growth and malignant behaviors of colon cancer cells. BMC Cancer. 2020;20:1-3. doi: 10.1186/s12885-020-06856-8. [PubMed: 32423468].
  63. Bahreini F, Saidijam M, Mousivand Z, Najafi R, Afshar S. Assessment of lncRNA DANCR, miR-145-5p and NRAS axis as biomarkers for the diagnosis of colorectal cancer. Mol Biol Rep. 2021;48(4):3541-7. doi: 10.1007/s11033-021-06373-2. [PubMed: 33956301].
  64. Ferlay J, Soerjomataram I, Dikshit R, Eser S, Mathers C, Rebelo M, et al. Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer. 2015;136(5):359-86. doi: 10.1002/ijc.29210. [PubMed: 25220842].
  65. van Meerbeeck JP, Fennell DA, De Ruysscher DK. Small-cell
  66. lung cancer. Lancet. 2011;378(9804):1741-55. doi: 10.1016/S0140-6736(11)60165-7. [PubMed: 21565397].
  67. Ferlay J, Steliarova-Foucher E, Lortet-Tieulent J, Rosso S, Coebergh JW, Comber H, et al. Cancer incidence and mortality patterns in Europe: estimates for 40 countries in 2012. Eur J Cancer. 2013;49(6):1374-1403. doi: 10.1016/j.ejca.2012.12.027. [PubMed: 23485231].
  68. Li W, Sun M, Zang C, Ma P, He J, Zhang M, et al. Upregulated long non-coding RNA AGAP2-AS1 represses LATS2 and KLF2 expression through interacting with EZH2 and LSD1 in non-small-cell lung cancer cells. Cell Death Dis. 2016;7(5):e2225. doi: 10.1038/cddis.2016.126. [PubMed: 27195672].
  69. Nanavaty P, Alvarez MS, Alberts WM. Lung cancer screening: advantages, controversies, and applications. Cancer Control. 2014;21(1):9-14. doi: 10.1177/107327481402100102. [PubMed: 24357736].
  70. Zhang K, Lv J, Peng X, Liu J, Li C, Li J, et al. Down-regulation of DANCR acts as a potential biomarker for papillary thyroid cancer diagnosis. Biosci Rep. 2019;39(4). doi: 10.1042/BSR20181616. [PubMed: 30910839].
  71. Lu Qc, Rui Zh, Guo Zl, Xie W, Shan S, Ren T. Lnc RNA‐DANCR contributes to lung adenocarcinoma progression by sponging miR‐496 to modulate mTOR expression. J Cell Mol Med. 2018;22(3):1527-37. doi: 10.1111/jcmm.13420. [PubMed: 29266795].
  72. Zhen Q, Gao LN, Wang RF, Chu WW, Zhang YX, Zhao XJ, et al. LncRNA DANCR promotes lung cancer by sequestering miR-216a. Cancer Control. 2018;25(1). doi: 10.1177/1073274818769849. [PubMed: 29651883].
  73. Chen YR, Wu YS, Wang WS, Zhang JS, Wu QG. Upregulation of lncRNA DANCR functions as an oncogenic role in non-small lung cancer by regulating miR-214-5p/CIZ1 axis. Eur Rev Med Pharmacol Sci. 2020;24(5):2539-47. doi: 10.26355/eurrev_202003_20521. [PubMed: 32196604].
  74. Bai Y, Zhang G, Chu H, Li P, Li J. The positive feedback loop of lncRNA DANCR/miR-138/Sox4 facilitates malignancy in non-small cell lung cancer. Am J Cancer Res. 2019;9(2):270-84. [PubMed: 30906628].
  75. Guo L, Gu J, Hou S, Liu D, Zhou M, Hua T, et al. Long non-coding RNA DANCR promotes the progression of non-small-cell lung cancer by inhibiting p21 expression. Onco Targets Ther. 2019;12:135-46. doi: 10.2147/OTT.S186607. [PubMed: 30613152].
  76. Huang YF, Zhang Y, Fu X. Long non-coding RNA DANCR promoted non-small cell lung cancer cells metastasis via modulating of miR-1225-3p/ErbB2 signal. Eur Rev Med Pharmacol Sci. 2021; 25(2):758-69. doi: 10.26355/eurrev_202101_24637. [PubMed: 33577030].
  77. Mirabello L, Troisi RJ, Savage SA. Osteosarcoma incidence and survival rates from 1973 to 2004: data from the surveillance, epidemiology, and end results program. Cancer. 2009;115(7):1531-43. doi: 10.1002/cncr.24121. [PubMed: 19197972].
  78. Yan K, Gao J, Yang T, Ma Q, Qiu X, Fan Q, et al. MicroRNA-34a inhibits the proliferation and metastasis of osteosarcoma cells both in vitro and in vivo. PloS One. 2012;7(3):e33778. doi: 10.1371/journal.pone.0033778. [PubMed: 22457788].
  79. Amankwah EK, Conley AP, Reed DR. Epidemiology and therapies for metastatic sarcoma. Clin Epidemiol. 2013;5:147-62. doi: 10.2147/CLEP.S28390. [PubMed: 23700373].
  80. Bacci G, Briccoli A, Rocca M, Ferrari S, Donati D, Longhi A, et al. Neoadjuvant chemotherapy for osteosarcoma of the extremities with metastases at presentation: recent experience at the Rizzoli Institute in 57 patients treated with cisplatin, doxorubicin, and a high dose of methotrexate and ifosfamide. Ann Oncol. 2003;14(7):1126-34. doi: 10.1093/annonc/mdg286. [PubMed: 12853357].
  81. Rainusso N, Wang LL, Yustein JT. The adolescent and young adult with cancer: State of the art-bone tumors. Curr Oncol Rep. 2013;15(4):296-307. doi: 10.1007/s11912-013-0321-9. [PubMed: 23690089].
  82. Szuhai K, Cleton-Jansen AM, Hogendoorn PC, Bovee JV. Molecular pathology and its diagnostic use in bone tumors. Cancer Genet. 2012;205(5):193-204. doi: 10.1016/j.cancergen.2012.04.001. [PubMed: 22682618].
  83. Picci P. Osteosarcoma (osteogenic sarcoma). Orphanet J Rare Dis. 2007;2:6. doi: 10.1186/1750-1172-2-6. [PubMed: 17244349].
  84. Jiang N, Wang X, Xie X, Liao Y, Liu N, Liu J, et al. lncRNA DANCR promotes tumor progression and cancer stemness features in osteosarcoma by upregulating AXL via miR-33a-5p inhibition. Cancer Lett. 2017;405:46-55. doi: 10.1016/j.canlet.2017.06.009. [PubMed: 28642170].
  85. Wang Y, Zeng X, Wang N, Zhao W, Zhang X, Teng S, et al. Long noncoding RNA DANCR, working as a competitive endogenous RNA, promotes ROCK1-mediated proliferation and metastasis via decoying of miR-335-5p and miR-1972 in osteosarcoma. Mol Cancer. 2018;17(1):89. doi: 10.1186/s12943-018-0837-6. [PubMed: 29753317].
  86. Pan Z, Wu C, Li Y, Li H, An Y, Wang G, Dai J, et al. LncRNA DANCR silence inhibits SOX5-medicated progression
  87. and autophagy in osteosarcoma via regulating
  88. miR-216a-5p. Biomed Pharmacother. 2020;122:109707. doi: 10.1016/j.biopha.2019.109707. [PubMed: 31918278].
  89. Jiang S, Miao Y, Hirokazu T, Zhu S, Lu J. Effects of lncRNA DANCR on proliferation and differentiation of osteoblasts by regulating the Wnt/β-catenin pathway. Eur Rev Med Pharmacol Sci. 2019;23(13):5558-66. doi: 10.26355/eurrev_201907_18289. [PubMed: 31298307].
  90. Zhang W, Li JZ, Tai QY, Tang JJ, Huang YH, Gao SB. LncRNA DANCR regulates osteosarcoma migration and invasion by targeting miR-149/MSI2 axis. Eur Rev Med Pharmacol Sci. 2020;24(12):6551-60. doi: 10.26355/eurrev_202006_21639. [PubMed: 32633342].
  91. Jemal A, Siegel R, Xu J, Ward E. Cancer statistics, 2010. CA Cancer J Clin. 2010;60(5):277-300. doi: 10.3322/caac.20073. [PubMed: 20610543].
  92. Neoptolemos JP, Stocken DD, Friess H, Bassi C, Dunn JA, Hickey H, et al. A randomized trial of chemoradiotherapy and chemotherapy after resection of pancreatic cancer. N Engl J Med. 2004;350(12):1200-10. doi: 10.1056/NEJMoa032295. [PubMed: 15028824].
  93. Simianu VV, Zyromski NJ, Nakeeb A, Lillemoe KD. Pancreatic cancer: progress made. Acta Oncol. 2010;49(4):407-17. doi: 10.3109/02841860903447051. [PubMed: 20059311].
  94. Luo Y, Wang Q, Teng L, Zhang J, Song J, Bo W, Liu D, He Y, Tan A. LncRNA DANCR promotes proliferation and metastasis in pancreatic cancer by regulating miRNA‐33b. FEBS Open Bio. 2020;10(1):18-27. doi: 10.1002/2211-5463.12732. [PubMed: 31515968].
  95. Liu Y, Li J, Yue B, Liang L, Zhang S, Chen Y. Long non-coding RNA DANCR regulates MLL3 and thereby it determines the progression of pancreatic cancer. J BUON. 2020;25(4):1954-9. [PubMed: 33099938].
  96. Yao Z, Chen Q, Ni Z, Zhou L, Wang Y, Yang Y, et al. Long non-coding RNA differentiation antagonizing nonprotein coding RNA (DANCR) promotes proliferation and invasion of pancreatic cancer by sponging miR-214-5p to regulate E2F2 expression. Med Sci Monit. 2019;25:4544-52. doi: 10.12659/MSM.916960. [PubMed: 31213582].
  97. Mansoor N, Tihami Mansoor MA. Eye pathologies in neonates. Int J Ophthalmol. 2016;9(12):1832-38. doi: 10.18240/ijo.2016.12.22. [PubMed: 28003988].
  98. Wang JX, Yang Y, Li K. Long noncoding RNA DANCR aggravates retinoblastoma through miR‐34c and miR‐613 by targeting MMP‐9. J Cell Physiol. 2018;233(10):6986-95. doi: 10.1002/jcp.26621. [PubMed: 29744877]
  99. Chen J, Ju H, Yuan X, Wang T, Lai B. SOX4 is a potential prognostic factor in human cancers: a systematic review and meta-analysis. Clin Transl Oncol. 2016;18(1):65-72. doi: 10.1007/s12094-015-1337-4. [PubMed: 26250764].
  100. Xu D, Yu J, Gao G, Lu G, Zhang Y, Ma P. LncRNA DANCR functions as a competing endogenous RNA to regulate RAB1A expression by sponging miR-634 in glioma. Biosci Rep. 2018;38(1). doi: 10.1042/BSR20171664. [PubMed: 29301870].
  101. Feng L, Lin T, Che H, Wang X. Long noncoding RNA DANCR knockdown inhibits proliferation, migration and invasion of glioma by regulating miR-135a-5p/BMI1. Cancer Cell Int. 2020;20(1):1-3. doi: 10.1186/s12935-020-1123-4. [PubMed: 32099526].
  102. Yang JX, Sun Y, Gao L, Meng Q, Yang BY. Long non-coding RNA DANCR facilitates glioma malignancy by sponging miR-33a-5p. Neoplasma. 2018;65(5):790-8. doi: 10.4149/neo_2018_17 0724N498. [PubMed: 29940760].
  103. Slaby O, Jancovicova J, Lakomy R, Svoboda M, Poprach A, Fabian P, et al. Expression of miRNA-106b in conventional renal cell carcinoma is a potential marker for prediction of early metastasis after nephrectomy. J Exp Clin Cancer Res. 2010;29(1):105. doi: 10.1186/1756-9966-29-105.
  104. Tang K, Xu H. Prognostic value of meta-signature miRNAs in renal cell carcinoma: an integrated miRNA expression profiling analysis. Sci Rep. 2015;5:10272. doi: 10.1038/srep10272.
  105. Zhai W, Sun Y, Jiang M, Wang M, Gasiewicz T, Zheng J, et al. Differential regulation of LncRNA-SARCC suppresses VHL-mutant RCC cell proliferation yet promotes VHL-normal RCC cell proliferation via modulating androgen receptor/HIF-2α/C-MYC axis under hypoxia. Oncogene. 2016;35(37):4866-80. doi: 10.1038/onc.2016.19. [PubMed: 26973243].
  106. Bukowski RM. Prognostic factors for survival in metastatic renal cell carcinoma: update 2008. Cancer. 2009; 115(S10):2273-81. doi: 10.1002/cncr.24226. [PubMed: 19402065].
  107. Jin L, Fu H, Quan J, Pan X, He T, Hu J, et al. Overexpression of long non-coding RNA differentiation antagonizing non-protein coding RNA inhibits the proliferation, migration and invasion and promotes apoptosis of renal cell carcinoma. Mol Med Rep. 2017;16(4):4463-8. doi: 10.3892/mmr.2017.7135. [PubMed: 28765964].
  108. Campo E, Harris NL, Jaffe ES, Pileri SA, Stein H, Thiele J, et al. WHO classification of tumours of haematopoietic and lymphoid tissues. France: International Agency For Research On Cancer; 2008.
  109. Harris NL, Jaffe ES, Diebold J, Flandrin G, Muller-Hermelink HK, Vardiman J. Lymphoma classification–from controversy to consensus: the REAL and WHO Classification of lymphoid neoplasms. Ann Oncol. 2000;11:3-10. [PubMed: 10707771].
  110. Puvvada S, Kendrick S, Rimsza L. Molecular classification, pathway addiction, and therapeutic targeting in diffuse large B cell lymphoma. Cancer Genet. 2013;206(7-8):257-65. doi: 10.1016/j.cancergen.2013.07.003. [PubMed: 24080457].
  111. Morgan DO. The cell cycle: principles of control. New Science Press; 2007.
  112. Lu Y, Hu Z, Mangala LS, Stine ZE, Hu X, Jiang D, et al. MYC targeted long noncoding RNA DANCR promotes cancer in part by reducing p21 levels. Cancer Res. 2018;78(1):64-74. doi: 10.1158/0008-5472.CAN-17-0815. [PubMed: 29180471].
  113. Dy GW, Gore JL, Forouzanfar MH, Naghavi M, Fitzmaurice C. Global burden of urologic cancers, 1990–2013. Eur Urol. 2017;71(3):437-46. doi: 10.1016/j.eururo.2016.10.008. [PubMed: 28029399].
  114. Grayson M. Bladder cancer. Nature. 2017;551(7679):S33. doi: 10.1038/551S33a. [PubMed: 29117156].
  115. Berdik C. Bladder cancer: 4 big questions. Nature. 2017;551(7679):S51. doi: 10.1038/551S51a. [PubMed: 29117157].
  116. Zhan Y, Chen Z, Li Y, He A, He S, Gong Y, et al. Long non-coding RNA DANCR promotes malignant phenotypes of bladder cancer cells by modulating the miR-149/MSI2 axis as a ceRNA. J Exp Clin Cancer Res. 2018;37(1):273. doi: 10.1186/s13046-018-0921-1. [PubMed: 30419948].
  117. Ping Q, Shi Y, Yang M, Li H, Zhong Y, Li J, et al. LncRNA DANCR regulates lymphatic metastasis of bladder cancer via the miR-335/VEGF-C axis. Transl Androl Urol. 2021;10(4):1743-53. doi: 10.21037/tau-21-226. [PubMed: 33968662].
  118. Chen Z, Chen X, Xie R, Huang M, Dong W, Han J, et al. DANCR promotes metastasis and proliferation in bladder cancer cells by enhancing IL-11-STAT3 signaling and CCND1 expression. Mol Ther. 2019;27(2):326-41. doi: 10.1016/j.ymthe.2018.12.015. [PubMed: 30660488].
  119. Lea JS, Lin KY. Cervical cancer. Obstet Gynecol Clin North Am. 2012;39(2):233-53. doi: 10.1016/j.ogc.2012.02.008. [PubMed: 22640713].
  120. Torre LA, Bray F, Siegel RL, Ferlay J, Lortet‐Tieulent J, Jemal A. Global cancer statistics, 2012. CA Cancer J Clin. 2015;65(2):87-108. doi: 10.3322/caac.21262. [PubMed: 25651787].
  121. Huang P, Xi J, Liu S. MiR-139-3p induces cell apoptosis and inhibits metastasis of cervical cancer by targeting
  122. NOB1. Biomed Pharmacother. 2016;83:850-56. doi: 10.1016/j.biopha.2016.07.050. [PubMed: 27505862].
  123. Chen W, Zheng R, Baade PD, Zhang S, Zeng H, Bray F, et al. Cancer statistics in China, 2015. CA Cancer J Clin. 2016;66(2):115-32. doi: 10.3322/caac.21338. [PubMed: 26808342].
  124. Shekari M, Sobti RC, Tamandani DMK, Malekzadeh K, Kaur P, Suri V. Association of genetic polymorphism of the DNA base excision repair gene (APE-1 Asp/148 Glu) and HPV type (16/18) with the risk of cervix cancer in north Indian population. Cancer Biomark. 2008;4(2):63-71. doi: 10.3233/cbm-2008-4202. [PubMed: 18503157].
  125. Leivonen SK, Lazaridis K, Decock J, Chantry A, Edwards DR, Kähäri VM. TGF-β-elicited induction of tissue inhibitor of metalloproteinases (TIMP)-3 expression in fibroblasts involves complex interplay between Smad3, p38α, and ERK1/2. PloS One. 2013;8(2):e57474. doi: 10.1371/journal.pone.0057474. [PubMed: 23468994].
  126. Dufour AM, Alvarez M, Russo B, Chizzolini C. Interleukin-6 and type-I collagen production by systemic sclerosis fibroblasts are differentially regulated by interleukin-17A in the presence of transforming growth factor-beta 1. Front Immunol. 2018;9:1865. doi: 10.3389/fimmu.2018.01865. [PubMed: 30150989].
  127. Melzer C, von der Ohe J, Otterbein H, Ungefroren H, Hass R. Changes in uPA, PAI-1, and TGF-β production during breast cancer cell interaction with human mesenchymal stroma/stem-like cells (MSC). Int J Mol Sci. 2019;20(11):2630. doi: 10.3390/ijms20112630. [PubMed: 31142059].
  128. Katz LH, Li Y, Chen JS, Muñoz NM, Majumdar A, Chen J, et al. Targeting TGF-β signaling in cancer. Expert Opin Ther Targets. 2013;17(7):743-60. doi: 10.1517/14728222.2013.782287. [PubMed: 23651053].
  129. Dituri F, Mancarella S, Cigliano A, Giannelli G. TGF-β as multifaceted orchestrator in HCC progression: signaling, EMT, immune microenvironment, and novel therapeutic perspectives. Semin Liver Dis. 2019;39(1):53-69. doi: 10.1055/s-0038-1676121. [PubMed: 30586675].
  130. Fabregat I, Caballero-Diaz D. Transforming growth factor-β-induced cell plasticity in liver fibrosis and hepatocarcinogenesis. Front Oncol. 2018;8:357. doi: 10.3389/fonc.2018.00357. [PubMed: 30250825].
  131. Villalba M, Evans SR, Vidal-Vanaclocha F, Calvo A. Role of TGF-β in metastatic colon cancer: it is finally time for targeted therapy. Cell Tissue Res. 2017;370:29-39. doi: 10.1007/s00441-017-2633-9. [PubMed: 28560691].
  132. Sheen YY, Kim MJ, Park SA, Park SY, Nam JS. Targeting the transforming growth factor-β signaling in cancer
  133. therapy. Biomol Ther (Seoul). 2013;21(5):323-31. doi: 10.4062/biomolther.2013.072. [PubMed: 24244818].
  134. Borok Z. Role for α3 integrin in EMT and pulmonary fibrosis. J Clin Invest. 2009;119(1):7-10. doi: 10.1172/JCI38084. [PubMed: 19104143].
  135. Javelaud D, Mauviel A. Crosstalk mechanisms between the mitogen-activated protein kinase pathways and Smad signaling downstream of TGF-β: implications for carcinogenesis. Oncogene. 2005;24(37):5742-50. doi: 10.1038/sj.onc.1208928. [PubMed: 16123807].
  136. Velden JL, Alcorn JF, Guala AS, Badura EC, Janssen-Heininger YM. c-Jun N-terminal kinase 1 promotes transforming growth factor–β1–induced epithelial-to-mesenchymal transition via control of linker phosphorylation and transcriptional activity of Smad3. Am J Respir Cell Mol Biol. 2011;44(4):571-81. doi: 10.1165/rcmb.2009-0282OC. [PubMed: 20581097].
  137. Reichl P, Dengler M, van Zijl F, Huber H, Führlinger G, Reichel C, et al. Axl activates autocrine transforming growth factor‐β signaling in hepatocellular carcinoma. Hepatology. 2015;
  138. (3):930-41. doi: 10.1002/hep.27492. [PubMed: 25251599].
  139. Tan X, Chen C, Zhu Y, Deng J, Qiu X, Huang S, et al. Proteotoxic stress desensitizes TGF-beta signaling through receptor downregulation in retinal pigment epithelial cells. Curr Mol Med. 2017;17(3):189-99. doi: 10.2174/156652401766617061911 3435. [PubMed: 28625142].
  140. Moustakas A, Heldin CH. Mechanisms of TGFβ-induced epithelial–mesenchymal transition. J Clin Med. 2016;5(7):63. doi: 10.3390/jcm5070063. [PubMed: 27367735].
  141. Cao L, Jin H, Zheng Y, Mao Y, Fu Z, Li X, et al. DANCR‐mediated microRNA‐665 regulates proliferation and metastasis of cervical cancer through the ERK/SMAD pathway. Cancer Sci. 2019;110(3):913-25. doi: 10.1111/cas.13921. [PubMed: 30582654].
  142. Liang H, Zhang C, Guan H, Liu J, Cui Y. LncRNA DANCR promotes cervical cancer progression by upregulating ROCK1 via sponging miR‐335‐5p. J Cell Physiol. 2019;234(5):7266-78. doi: 10.1002/jcp.27484. [PubMed: 30362591].
  143. Hu C, Han Y, Zhu G, Li G, Wu X. Krüppel-like factor 5-induced overexpression of long non-coding RNA DANCR promotes the progression of cervical cancer via repressing microRNA-145-3p to target ZEB1. Cell Cycle. 2021;20(14):1441-54. doi: 10.1080/15384101.2021.1941625. [PubMed: 34233586].
  144. Chen YP, Chan AT, Le QT, Blanchard P, Sun Y, Ma J. Nasopharyngeal carcinoma. Lancet. 2019;394(10192):64-80. doi: 10.1016/S0140-6736(19)30956-0. [PubMed: 31178151].
  145. Guo R, Mao YP, Tang LL, Chen L, Sun Y, Ma J. The evolution of nasopharyngeal carcinoma staging. Br J Radiol. 2019;
  146. (1102):20190244. doi: 10.1259/bjr.20190244. [PubMed: 31298937].
  147. Wei KR, Zheng RS, Zhang SW, Liang ZH, Ou ZX, Chen WQ. Nasopharyngeal carcinoma incidence and mortality in
  148. China in 2010. Chin J Cancer. 2014;33(8):381-7. doi: 10.5732/cjc.014.10086. [PubMed: 25096544].
  149. Chua ML, Wee JT, Hui EP, Chan AT. Nasopharyngeal carcinoma. Lancet. 2016;387(10022):1012-24. doi: 10.1016/S0140-6736(15)00055-0. [PubMed: 26321262].
  150. Zhang LI, Huang Y, Hong S, Yang Y, Yu G, Jia J, et al. Gemcitabine plus cisplatin versus fluorouracil plus cisplatin in recurrent or metastatic nasopharyngeal carcinoma: a multicentre, randomised, open-label, phase 3 trial. Lancet. 2016; 388(10054):1883-92. doi: 10.1016/S0140-6736(16)31388-5. [PubMed: 27567279].
  151. Li Q, Jiang Y, Zhong G, Lu Y, Song T, Zhang Y, Wu J, et al. Long noncoding RNA DANCR regulates cell proliferation by stabilizing SOX2 mRNA in nasopharyngeal carcinoma. Am J Pathol. 2020;190(12):2343-54. doi: 10.1016/j.ajpath.2020.09.005.
  152. Wen X, Liu XU, Mao YP, Yang XJ, Wang YQ, Zhang PP, et al. Long non-coding RNA DANCR stabilizes HIF-1α and promotes metastasis by interacting with NF90/NF45 complex in nasopharyngeal carcinoma. Theranostics. 2018;8(20):5676-89. doi: 10.7150/thno.28538.
  153. Rizvi S, Gores GJ. Pathogenesis, diagnosis, and management of cholangiocarcinoma. Gastroenterology. 2013;145(6):1215-29. doi: 10.1053/j.gastro.2013.10.013. [PubMed: 24140396].
  154. Rizvi S, Gores GJ. Emerging molecular therapeutic targets for cholangiocarcinoma. J Hepatol. 2017;67(3):632-44. doi: 10.1016/j.jhep.2017.03.026. [PubMed: 28389139].
  155. Aljiffry M, Walsh MJ, Molinari M. Advances in diagnosis, treatment and palliation of cholangiocarcinoma: 1990-2009. World J Gastroenterol. 2009;15(34):4240-62. doi: 10.3748/ wjg.15.4240. [PubMed: 19750567].
  156. Wang N, Zhang C, Wang W, Liu J, Yu Y, Li Y, et al. Long noncoding RNA DANCR regulates proliferation and migration by epigenetically silencing FBP1 in tumorigenesis of cholangiocarcinoma. Cell Death Dis. 2019;10(8):1-1. doi: 10.1038/s41419-019-1810-z. [PubMed: 31383847].
  157. Pennathur A, Gibson MK, Jobe BA, Luketich JD. Oesophageal carcinoma. Lancet. 2013;381(9864):400-12. doi: 10.1016/ S0140-6736(12)60643-6. [PubMed: 23374478].
  158. Zeng H, Zheng R, Guo Y, Zhang S, Zou X, Wang N, et al. Cancer survival in C hina, 2003–2005: A population‐based study. Int J Cancer. 2015;136(8):1921-30. doi: 10.1002/ijc.29227. [PubMed: 25242378].
  159. Sadr S, Ahmadi Simab P, Borji H. CRISPR-Cas9 as a Potential Cancer Therapy Agent: An Update. Res Biotechnol Environ Sci. 2023; 2(1): 12–17. Doi: 10.58803/RBES.2023.2.1.02
  160. Döhner H, Estey EH, Amadori S, Appelbaum FR, Büchner T, Burnett AK, et al. Diagnosis and management of acute myeloid leukemia in adults: recommendations from an international expert panel, on behalf of the European LeukemiaNet. Blood. 2010;115(3):453-74. doi: 10.1182/blood-2009-07-235358. [PubMed: 19880497].
  161. Koolivand M, Ansari M, Piroozian F, Moein S, Malekzadeh K. Alleviating the progression of acute myeloid leukemia (AML) by sulforaphane through controlling miR-155 levels. Mol Biol Rep. 2018;45(6):2491-9. doi: 10.1007/s11033-018-4416-0. [PubMed: 30350234].
  162. Schenk T, Chen WC, Göllner S, Howell L, Jin L, Hebestreit K, et al. Inhibition of the LSD1 (KDM1A) demethylase reactivates the all-trans-retinoic acid differentiation pathway in acute myeloid leukemia. Nat Med. 2012;18(4):605-11. doi: 10.1038/nm.2661. [PubMed: 22406747].
  163. Zhang H, Liu L, Chen L, Liu H, Ren S, Tao Y. Long noncoding RNA DANCR confers cytarabine resistance in acute myeloid leukemia by activating autophagy via the miR-874-3P/ATG16L1 axis. Mol Oncol. 2021;15(4):1203-16. doi: 10.1002/1878-0261.12661. [PubMed: 33638615].
  164. Jena BC, Sarkar S, Rout L, Mandal M. The transformation of cancer-associated fibroblasts: current perspectives on the role of TGF-β in CAF mediated tumor progression and
  165. therapeutic resistance. Cancer Lett. 2021;520:222-32. doi: 10.1016/j.canlet.2021.08.002. [PubMed: 34363903]