Document Type : Research articles


1 Department of Biology, Damghan Branch, Islamic Azad University, Damghan, Iran

2 Razi Reference Laboratory of Scorpion Research, Razi Vaccine and Serum Research Institute, Agricultural Research Education and Extension Organization, Karaj, Iran

3 Department of Venomous Animal and Antivenom Production, Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization(AREEO), Tehran, Iran


Background:MesobuthuseupeusvenomisamemberofButhidaefamily,whichcanenterthebloodcirculationexertingdetrimental e?ectsonbodyorgans,suchastheliverandkidneythroughin?ammation. Cyclosporine,knownasananti-in?ammatorydrug,is usedtotreatmanyin?ammation-associateddiseases. Objectives: Inthisstudy,cyclosporinewasselectedtoinhibitthescorpiontoxine?ectsonratorgans.
Methods: Thisexperimental studywas conductedinthe RaziVaccine andSerum ResearchInstitute, AgriculturalResearch EducationandExtensionOrganization,Karaj,Iran,fromJunetoNovember2019.Fiftymaleratswererandomlydividedinto?vegroupsof 10,includingthecontrol(10mg/kgoliveoili.p),M.eupeusvenom(10mg/kgi.p.),cyclosporine10mg/kg(venom10mg/kgfor30min i.pfollowedbycyclosporine10/kgmgfor7dayi.p.),cyclosporine20mg/kg(venom10mg/kgfor30mini.pfollowedbycyclosporine 20mg/kgfor7dayi.p.),andcyclosporine30mg/kg(venom10mg/kgfor30mini.pfollowedbycyclosporine30mg/kgfor7dayi.p.). Aftertreatmentwithcyclosporine,theliverandkidneyfunctionwasanalyzedbycalculatingsomebiochemicalenzymes,including serumglutamate-pyruvatetransaminase(SGPT),serumglutamicoxaloacetictransaminase(SGOT),nitricoxide(NO),interleukin-2 (IL-2), malondialdehyde(MDA), creatinine, andurea viaELISAand spectrophotometry. Then, to determinethe rateof apoptosis in tissue,terminaldeoxynucleotidyltransferase-mediateddUTPnick-endlabelingmethodwasdone. Results:Attheendof thestudy,theresultsshowedasigni?cantelevationinSGPT(164.5±10vs.126.2±7,P< 0.0001),SGOT(190.37 ±11vs. 148±10,P< 0.0001),NO(24.4±1.17vs. 17.4±1.4,P=0.02),andMDA(0.42±0.05vs. 0.22±0.04,P< 0.0001)inthevenom groupcomparedwiththecontrolgroup. Therewerenosigni?cantdi?erencesintheurea,IL-2,andcreatininebetweenthevenom andcontrolgroups.However,thegroupreceivingcyclosporine(30mg/kg)showedasigni?cantdeclineinSGPT(96.42±5.7vs.164.5 ±10, P < 0.0001), SGOT (144.57±9.24 vs. 190.37±11, P < 0.0001), urea (28.83±1.32 vs. 38.83±1.6, P = 0.00), creatinine (0.023± 0.01vs. 0.29±0.005,P< 0.0001),andMDA(0.10±0.01vs. 0.42±0.05,P< 0.0001),aswellasincreasedapoptosisrate(P< 0.05), compared with the venom group. No signi?cant di?erence was observed between the cyclosporine and venom groups in NO and IL-2.
Conclusions: Cyclosporineatadoseof 30mgwasabletodecreasein?ammatoryresponsesandinduceapoptosisrate. Therefore, itcouldbeasuitabledrugforpatientsbittenbyascorpionsting.


  1. Prendini L, Wheeler WC. Scorpion higher phylogeny and classification, taxonomic anarchy, and standards for peer review in online publishing. Cladistics. 2005;21(5):446-94.
  2. Petricevich VL. Scorpion venom and the inflammatory response. Mediators of inflammation. 2010;2010.
  3. Zayerzadeh E, Koohi MK, Zare Mirakabadi A, Purkabireh M, Kassaaian SE, Rabbani SH, et al. Cardiopulmonary complications induced by Iranian Mesobuthus eupeus scorpion venom in anesthetized rabbits. Journal of Venomous Animals and Toxins including Tropical Diseases. 2010;16(1):46-59.
  4. Laraba-Djebari F, Adi-Bessalem S, Hammoudi-Triki D. Scorpion venoms: pathogenesis and biotherapies. Gopalakrishnakone P, Possani LD, Schwartz EF, de la Vega RC R, editors. Scorpion Venoms. Dordrecht: Springer Netherlands. 2015:63-85.
  5. Adi-Bessalem S, Hammoudi-Triki D, Laraba-Djebari F. Scorpion venom interactions with the immune system. Scorpion Venoms. Dordrecht: Springer Netherlands. 2015:87-107.
  6. Khemili D, Laraba-Djebari F, Hammoudi-Triki D. Involvement of Toll-like Receptor 4 in Neutrophil-Mediated Inflammation, Oxidative Stress and Tissue Damage Induced by Scorpion Venom. Inflammation. 2020;43(1):155-67.
  7. Chaïr-Yousfi I, Laraba-Djebari F, Hammoudi-Triki D. Androctonus australis hector venom contributes to the interaction between neuropeptides and mast cells in pulmonary hyperresponsiveness. International immunopharmacology. 2015;25(1):19-29.
  8. Saidani C, Hammoudi-Triki D, Laraba-Djebari F, Taub M. In vitro studies with renal proximal tubule cells show direct cytotoxicity of Androctonus australis hector scorpion venom triggered by oxidative stress, caspase activation and apoptosis. Toxicon. 2016;120:29-37.
  9. Saidani C, Béchohra L, Laraba-Djebari F, Hammoudi-Triki D. Kidney inflammation and tissue injury induced by scorpion venom: comparison with a nephrotoxic model. Toxin Reviews. 2019;38(3):240-7.
  10. Chippaux J-P, Goyffon M. Epidemiology of scorpionism: a global appraisal. Acta tropica. 2008;107(2):71-9.
  11. Angsanakul J, Sitprija V. Scorpion venoms, kidney and potassium. Toxicon. 2013;73:81-7.
  12. Yadav S, Pawar G, Kulkarni P, Ferris C, Amiji M. CNS Delivery and Anti-Inflammatory Effects of Intranasally Administered Cyclosporine-A in Cationic Nanoformulations. Journal of Pharmacology and Experimental Therapeutics. 2019;370(3):843-54.
  13. Liddicoat AM, Lavelle EC. Modulation of innate immunity by cyclosporine A. Biochemical pharmacology. 2019.
  14. Pino-Lagos K, Michea P, Sauma D, Alba A, Morales J, Bono MR, et al. Cyclosporin A-treated dendritic cells may affect the outcome of organ transplantation by decreasing CD4+ CD25+ regulatory T cell proliferation. Biological research. 2010;43(3):333-7.
  15. Singh K, Argáez C. Cyclosporine for Moderate to Severe Plaque Psoriasis in Adults: A Review of Clinical Effectiveness and Safety. Canadian Agency for Drugs and Technologies in Health. 2018.
  16. Archer TM, Stokes JV, Kummari E, Fellman C, Thomason J, Haraschak J, et al. In vivo effects of aspirin and cyclosporine on regulatory T cells and T-cell cytokine production in healthy dogs. Veterinary immunology and immunopathology. 2018;197:63-8.
  17. Fellman CL, Archer TM, Stokes JV, Wills RW, Lunsford KV, Mackin AJ. Effects of oral cyclosporine on canine T‐cell expression of IL‐2 and IFN‐gamma across a 12‐h dosing interval. Journal of veterinary pharmacology and therapeutics. 2016;39(3):237-44.
  18. Tveden‐Nyborg P, Bergmann TK, Lykkesfeldt J. Basic & clinical pharmacology & toxicology policy for experimental and clinical studies. Basic & clinical pharmacology & toxicology. 2018;123(3):233-5.
  19. Lamraoui A, Adi-Bessalem S, Laraba-Djebari F. Immunopathologic effects of scorpion venom on hepato-renal tissues: Involvement of lipid derived inflammatory mediators. Experimental and molecular pathology. 2015;99(2):286-96.
  20. Mirakabbadi A, Zolfagharian H, Hedayat A, Jalali A. Clinical and biochemical manifestation produced by scorpion (Hemiscorpius lepturus) venom in experimental animals. Journal of Venomous Animals and Toxins including Tropical Diseases. 2007;13(4):758-65.
  21. Zayerzadeh E, Zare MA, Koohi MK. Biochemical and histopathological study of Mesobuthus eupeus scorpion venom in the experimental rabbits. Archives of Razi Institute. 2011.
  22. Salman MM, Hammad S. Oxidative stress and some biochemical alterations due to scorpion (Leiurus quinquestriatus) crude venom in rats. Biomedicine & Pharmacotherapy. 2017;91:1017-21.
  23. Mirakabadi AZ, Jalali A, Jahromi AE, Vatanpur H, Akbary A. Biochemical changes and manifestations of envenomation produced by Odonthobuthus doriae venom in rabbits. Journal of venomous animals and toxins including tropical diseases. 2006;12(1):67-77.
  24. El Hidan MA, Touloun O, El Hiba O, Boumezzough A. Pathophysiological and neurobehavioral injuries in mice experimentally envenomed with Androctonus liouvillei (Pallary, 1928) scorpion venom. Experimental and Toxicologic Pathology. 2016;68(2-3):133-41.
  25. Petricevich VL, Peña CF. The dynamics of cytokine d nitric oxide secretion in mice injected with Tityus serrulatus scorpion venom. Mediators of Inflammation. 2002;11(3):173-80.
  26. Kahan BD, Gibbons SHEENA, Tejpal N, Stepkowski SM, Chou T. Synergistic interactions of cyclosporine and rapamycin to inhibit immune performances of normal human peripheral blood lymphocytes in vitro. Transplantation. 1991;51(1):232-9.
  27. Kang HG, Zhang D, Degauque N, Mariat C, Alexopoulos S, Zheng XX. Effects of cyclosporine on transplant tolerance: the role of IL‐2. American journal of transplantation. 2007;7(8):1907-16.
  28. Dehghani R, Fathi B. Scorpion sting in Iran: a review. Toxicon. 2012;60(5):919-33.
  29. Sitprija V, Sitprija S. Renal effects and injury induced by animal toxins. Toxicon. 2012;60(5):943-53.
  30. Zoccal KF, Paula-Silva FWG, da Silva Bitencourt C, Sorgi CA, Bordon KDCF, Arantes EC, et al. PPAR-γ activation by Tityus serrulatus venom regulates lipid body formation and lipid mediator production. Toxicon. 2015;93:90-7.
  31. Costal-Oliveira F, Guerra-Duarte C, Castro KLP, Tintaya B, Bonilla C, Silva W, et al. Serological, biochemical and enzymatic alterations in rodents after experimental envenomation with Hadruroides lunatus scorpion venom. Toxicon. 2015;103:129-34.
  32. Niedernhofer LJ, Daniels JS, Rouzer CA, Greene RE, Marnett LJ. Malondialdehyde, a product of lipid peroxidation, is mutagenic in human cells. Journal of Biological Chemistry. 2003;278(33):31426-33.
  33. Dousset E, Carrega L, Steinberg JG, Clot-Faybesse O, Jouirou B, Sauze N, et al. Evidence that free radical generation occurs during scorpion envenomation. Comparative biochemistry and physiology part c: toxicology & pharmacology. 2005;140(2):221-6.
  34. Shihab FS, Andoh TF, Tanner AM, Yi H, Bennett WM. Expression of apoptosis regulatory genes in chronic cyclosporine nephrotoxicity favors apoptosis. Kidney international. 1999;56(6):2147-59.
  35. Rao SR, Sundararajan S, Subbarayan R, Girija DM. Cyclosporine-A induces endoplasmic reticulum stress and influences pro-apoptotic factors in human gingival fibroblasts. Molecular and cellular biochemistry. 2017;429(1-2):179-85.
  36. Wu Q, Wang X, Nepovimova E, Wang Y, Yang H, Kuca K. Mechanism of cyclosporine A nephrotoxicity: Oxidative stress, autophagy, and signalings. Food and chemical toxicology. 2018;118:889-907.
  37. Kim SI, Song HY, Hwang JH, Chong DL, Lee HY, Han DS, et al. Cyclosporine nephrotoxicity: the mechanisms of cell injury by cyclosporine A in renal proximal tubular cells. Transplantation proceedings. 2000. p. 1621-2.