Document Type : Research articles


1 1. Department of Pharmacology and Toxicology, Faculty of Pharmacy, Baqiyatallah University of Medical Sciences, Tehran, Iran 2. Chemical Injuries Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran

2 1. Department of Pharmacology and Toxicology, Faculty of Pharmacy, Baqiyatallah University of Medical Sciences, Tehran, Iran


Background: One of the most toxic effects of organophosphorus poisoning (OP) is the paralysis of skeletal muscles. The oximes are a group of available antidotes. This study investigated the effects of different concentrations of paraoxon on the function of skeletal muscle and reversal or prevention of these effects by three different oximes (i.e., pralidoxime, obidoxime, and HI-6).
Materials and Methods: This study was conducted based on the chicken biventer cervices (CBC) nerve-muscle preparation and the use of twitch tension recording technique. The twitches of the CBC were evoked by stimulating the motor nerve at 0.1 Hz with pulses of 0.2 msec duration and a voltage greater than that required to produce the maximum response. Moreover, twitches and contractures were recorded isotonically using Grass Biosystems.
Results: Paraoxon at 0.1 µM induced a significant increase (more than 100%) in the twitch amplitude, while higher concentrations (0.3 and 1µM) induced partial or total contracture. Therefore, paraoxon at a concentration of 0.1 µ M was used to examine the capability of oximes to prevent or reverse its effects. Pralidoxime, obidoxime, and HI-6 dose-dependently prevented (when it was used as pre-treatment, 20 min before or at the same time of administration of the toxin) and reversed (when it was used as post-treatment, 20 min after the administration of the toxin) the effect of paraoxon.
Conclusion: In conclusion, these results revealed that oximes were very useful in the prevention and reversal of the OP toxic effects on the skeletal muscle. Moreover, it was suggested that oximes were more effective when used as pre-treatment. Pralidoxime was more potent than obidoxime and HI-6. The HI-6, which is a newer oxime, was unexpectedly less effective than the other two.


  1. Eddleston M, Chowdhury FR. Pharmacological treatment of organophosphorus insecticide poisoning: the old and the (possible) new. Br J Clin Pharmacol. 2016;81(3):462-70. doi: 10.1111/bcp.12784. [PubMed: 26366467].
  2. Vallet V, Cruz C, Josse D, Bazire A, Lallement G, Boudry I. In vitro percutaneous penetration of organophosphorus compounds using full-thickness and split-thickness pig and human skin. Toxicol In Vitro. 2007;21(6):1182-90. doi: 10.1016/j.tiv.2007.03.007. [PubMed: 17481849].
  3. Pirsaheb M, Hossini H, Asadi F, Janjani H. A systematic review on organochlorine and organophosphorus pesticides content in water resources. Toxin Rev. 2017;36(3):210-21. doi: 10.1080/15569543.2016.1269810.
  4. Ai P, Kaiyuan Z, Xinhua L, Changbin L, Buckley NA, Roberts DM. Extracorporeal blood purification for organophosphorus pesticide poisoning. Cochrane Database Syst Rev. 2017;8:CD006253. doi: 10.1002/14651858.CD006253.pub2.
  5. Maxwell DM, Brecht KM, Koplovitz I, Sweeney RE. Acetylcholinesterase inhibition: does it explain the toxicity of organophosphorus compounds? Arch Toxicol. 2006;80(11):756. doi: 10.1007/s00204-006-0120-2. [PubMed: 16770629].
  6. Chaurasia D, Ramavtar SV, Suresh SP. Severe Organophosphate poisoning with acute cholinergic crisis, intermediate syndrome and organophosphate induced long term ptosis. J Assoc Physicians India. 2018;66(12):81-3. [PubMed: 31313560].
  7. Vale A, Lotti M. Organophosphorus and carbamate insecticide poisoning. Handbook of clinical neurology. New York: Elsevier Book; 2017. doi: 10.1016/B978-0-444-62627-1.00010-X.
  8. Abdollahi M, Karami-Mohajeri S. A comprehensive review on experimental and clinical findings in intermediate syndrome caused by organophosphate poisoning. Toxicol Appl Pharmacol. 2012;258(3):309-14. doi: 10.1016/j.taap.2011.11.014. [PubMed: 22177963].
  9. Dadparvar M, Wagner S, Wien S, Worek F, von Briesen H, Kreuter J. Freeze-drying of HI-6-loaded recombinant human serum albumin nanoparticles for improved storage stability. Eur J Pharm Biopharm. 2014;88(2):510-7. doi: 10.1016/j.ejpb.2014.06.008. [PubMed: 24995841].
  10. Worek F, Thiermann H, Wille T. Oximes in organophosphate poisoning: 60 years of hope and despair. Chem Biol Interact. 2016;259(Pt B):93-8. doi: 10.1016/j.cbi.2016.04.032. [PubMed: 27125761].
  11. Petroianu GA, Hasan MY, Nurulain SM, Nagelkerke N, Kassa J, Kuča K. New K-Oximes (K-27 and K-48) in comparison with Obidoxime (LuH-6), HI-6, trimedoxime (TMB-4), and pralidoxime (2-PAM): survival in rats exposed IP to the organophosphate paraoxon. Toxicol Mech Methods. 2007;17(7):401-8. doi: 10.1080/15376510601131362. [PubMed: 20020943].
  12. Musílek K, Kuca K, Jun D. Evaluation of potency of known oximes (pralidoxime, trimedoxime, HI-6, methoxime, obidoxime) to in vitro reactivate acetylcholinesterase inhibited by pesticides (chlorpyrifos and methylchlorpyrifos) and nerve agent (Russian VX). Acta Med (Hradec Králové). 2007;50(3):203-6. [PubMed: 8254274].
  13. Rahimi A, Nazemiyeh H, Azarmi Y. Effect of Salvia sahendica extracts on neuromuscular transmission in chick biventer cervicis muscle. Pharm Sci. 2015;21(4):199-204. doi: 10.15171/PS.2015.37.
  14. Werner AC, Ferraz MC, Yoshida EH, Tribuiani N, Gautuz JAA, Santana MN, et al. The facilitatory effect of Casearia sylvestris Sw.(guaçatonga) fractions on the contractile activity of mammalian and avian neuromuscular apparatus. Curr Pharm Biotechnol. 2015;16(5):468-81. [PubMed: 25751174].
  15. Poorheidari GR, Khodaei N, Shahriary AR, Sahraei H, Noroozzadeh A, Saberi M, et al. Evaluation of the changes in contractility of Chick biventer cervices nerve-muscle encountered with Paraoxon and Pralidoxime: Introduction of a non- enzymatic method. J Mil Med. 2004;6(1):1-6.
  16. Petroianu GA, Nurulain SM, Nagelkerke N, Shafiullah M, Kassa J, Kuča K. Five oximes (K-27, K-48, obidoxime, HI-6 and trimedoxime) in comparison with pralidoxime: survival in rats exposed to methyl-paraoxon. J Appl Toxicol. 2007;27(5):453-7. doi: 10.1002/jat.1224. [PubMed: 17304644].
  17. Blumenberg A, Benabbas R, deSouza IS, Conigliaro A, Paladino L, Warman E, et al. Utility of 2-pyridine aldoxime methyl chloride (2-PAM) for acute organophosphate poisoning: a systematic review and meta-analysis. J Med Toxicol. 2018;14(1):91-8. doi: 10.1007/s13181-017-0636-2. [PubMed: 29230717].
  18. Moon J, Chun B, Lee S. Variable response of cholinesterase activities following human exposure to different types of organophosphates. Hum Exp Toxicol. 2015;34(7):698-706. doi: 10.1177/0960327114558890. [PubMed: 25712411].
  19. Eyer F, Meischner V, Kiderlen D, Thiermann H, Worek F, Haberkorn M, et al. Human parathion poisoning. A toxicokinetic analysis. Toxicol Rev. 2003;22(3):143-63. doi: 10.2165/00139709-200322030-00003. [PubMed: 15181664].
  20. Isbister GK, Mills K, Friberg LE, Hodge M, O'Connor E, Patel R, et al. Human methyl parathion poisoning. Clin Toxicol. 2007;45(8):956-60. doi: 10.1080/15563650701232745. [PubMed: 17852161].
  21. Muhammad G, Rashid I, Firyal S. Practical aspects of treatment of organophosphate and carbamate insecticide poisoning in animals. Matrix Sci Pharma. 2017;1(1):10-1.
  22. Singh S, Sharma N. Neurological syndromes following organophosphate poisoning. Neurol India. 2000;48(4):308-13. [PubMed: 11146591].
  23. Luo C, Leader H, Radic Z, Maxwell DM, Taylor P, Doctor BP, et al. Two possible orientations of the HI-6 molecule in the reactivation of organophosphate-inhibited acetylcholinesterase. Biochem Pharmacol. 2003;66(3):387-92. doi: 10.1016/s0006-2952(03)00237-5. [PubMed: 12907237].
  24. Lallement G, Demoncheaux JP, Foquin A, Baubichon D, Galonnier M, Clarençon D, et al. Subchronic administration of pyridostigmine or huperzine to primates: compared efficacy against soman toxicity. Drug Chem Toxicol. 2002;25(3):309-20. doi: 10.1081/dct-120005893. [PubMed: 12173251].
  25. Cowan FM, Broomfield CA, Lenz DE, Shih TM. Protective action of the serine protease inhibitor N‐tosyl‐L‐lysine chloromethyl ketone (TLCK) against acute soman poisoning. J Appl Toxicol. 2001;21(4):293-6. doi: 10.1002/jat.757. [PubMed: 11481662].
  26. Kassa J, Karasova J, Musilek K, Kuca K. An evaluation of therapeutic and reactivating effects of newly developed oximes (K156, K203) and commonly used oximes (obidoxime, trimedoxime, HI-6) in tabun-poisoned rats and mice. Toxicology. 2008;243(3):311-6. doi: 10.1016/j.tox.2007.10.015. [PubMed: 18054821].
  27. Kuca K, Cabal J, Kassa J. A comparison of the potency of newly developed oximes (K005, K027, K033, K048) and currently used oximes (pralidoxime, obidoxime, HI-6) to reactivate sarin-inhibited rat brain acetylcholinesterase by in vitro methods. J Toxicol Environ Health. 2005;68(8):677-86. doi: 10.1080/15287390590921784. [PubMed: 15901095].
  28. Worek F, Widmann R, Knopff O, Szinicz L. Reactivating potency of obidoxime, pralidoxime, HI 6 and HLö 7 in human erythrocyte acetylcholinesterase inhibited by highly toxic organophosphorus compounds. Arch Toxicol. 1998;72(4):237-43. doi: 10.1007/s002040050495. [PubMed: 9587020].
  29. Kuča K, Musilek K, Jun D, Pohanka M, Žďárová Karasová J, Novotný L, et al. Could oxime HI-6 really be considered as “broad-spectrum” antidote. J Appl Biomed. 2009;7(3):143-9.