Document Type : Research articles


1 Department of Biological Sciences, Islamic Azad University, Tehran North Branch, Tehran, Iran

2 Department of Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran


Background: In recent years, the prevalence of antibiotic resistance has steadily increased and also the antibiotic-resistant strains producing extended-spectrum beta-lactamases (ESBLs) and AmpC beta-lactamases have emerged among the Enterobacteriaceae, predominantly in Escherichia coli and Klebsiella pneumoniae species.
Objectives: This prospective study aimed at determining the production of ESBL or AmpC, phenotypically and also at the molecular level, in E. coli and K. pneumoniae isolates collected from various clinical specimens.
Methods: In total, 78 K. pneumoniae and 92 E. coli isolates were collected from various clinical infectious sources available in different wards of the Imam Reza Hospital, Tabriz, Iran, from July 2017 to December 2018. All isolates were subjected to antimicrobial susceptibility testing. MAST 4-disc test and polymerase chain reaction (PCR) were applied for phenotypic and genotypic detection of ESBLs and plasmid-encoded AmpCs (pAmpCs) among isolates, respectively.
Results: Overall, 78 K. pneumoniae and 92 E. coli isolates were evaluated, of which 46 K. pneumoniae (58.9%) and 51 E. coli (55.4%) isolates were resistant to cefotaxime/ceftazidime and included in the study. Among the K. pneumoniae and E. coli isolates resistant to cefotaxime/ceftazidime, 40 (86.9%) and 40 (78.4%) isolates were ESBL producers and 8 (17.3%) and 2 (3.9%) isolates were pAmpC producers, respectively. In addition, 40 E. coli (78.4%) isolates were positive for both CTX-M-14 and CTX-M-15 genes. Regarding K. pneumoniae isolates, 40 isolates (86.9%) were positive for CTX-M-15 gene and 18 isolates (39.1%) for CTX-M-14 gene. Among 51 ceftazidime/cefotaxime-resistant E. coli isolates, 32 isolates (62.7%) were positive for DHA-1 gene and 33 isolates (64.7%) isolates for CMY-2 gene. Also, among 46 ceftazidime/cefotaxime-resistant K. pneumoniae isolates, 15 isolates (32.6%) had DHA-1 gene and 27 isolates (58.7%) had CMY-2 gene in the genome.
Conclusions: The high prevalence of ESBL and AmpC production among E. coil and K. pneumoniae isolates was a serious concern in the studied region. Therefore, a simple and rapid PCR-based technique is essential to detect and distinguish various pAmpC and ESBL genes to discriminate other resistance determinants


  1. Harris PNA, Tambyah PA, Lye DC, Mo Y, Lee TH, Yilmaz M, et al. Effect of piperacillin-tazobactam vs meropenem on 30-Day mortality for patients with E coli or Klebsiella pneumoniae bloodstream infection and ceftriaxone resistance: A randomized clinical trial. JAMA. 2018;320(10):984-94. doi: 10.1001/jama.2018.12163. [PubMed: 30208454]. [PubMed Central: PMC6143100].
  2. Matuschek E, Ahman J, Webster C, Kahlmeter G. Antimicrobial susceptibility testing of colistin - evaluation of seven commercial MIC products against standard broth microdilution for Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, and Acinetobacter spp. Clin Microbiol Infect. 2018;24(8):865-70. doi: 10.1016/j.cmi.2017.11.020. [PubMed: 29221995].
  3. Kang CI, Kim SH, Park WB, Lee KD, Kim HB, Kim EC, et al. Bloodstream infections due to extended-spectrum beta-lactamase-producing Escherichia coli and Klebsiella pneumoniae: Risk factors for mortality and treatment outcome, with special emphasis on antimicrobial therapy. Antimicrob Agents Chemother. 2004;48(12):4574-81. doi: 10.1128/AAC.48.12.4574-4581.2004. [PubMed: 15561828]. [PubMed Central: PMC529180].
  4. Sarojamma V, Ramakrishna V. Prevalence of ESBL-producing Klebsiella pneumoniae isolates in tertiary care hospital. ISRN Microbiol. 2011;2011:318348. doi: 10.5402/2011/318348. [PubMed: 23724303]. [PubMed Central: PMC3658478].
  5. Polsfuss S, Bloemberg GV, Giger J, Meyer V, Bottger EC, Hombach M. Practical approach for reliable detection of AmpC beta-lactamase-producing Enterobacteriaceae. J Clin Microbiol. 2011;49(8):2798-803. doi: 10.1128/JCM.00404-11. [PubMed: 21632895]. [PubMed Central: PMC3147735].
  6. Song W, Kim JS, Kim HS, Yong D, Jeong SH, Park MJ, et al. Increasing trend in the prevalence of plasmid-mediated AmpC beta-lactamases in Enterobacteriaceae lacking chromosomal ampC gene at a Korean University Hospital from 2002 to 2004. Diagn Microbiol Infect Dis. 2006;55(3):219-24. doi: 10.1016/j.diagmicrobio.2006.01.012. [PubMed: 16545935].
  7. Son SK, Lee NR, Ko JH, Choi JK, Moon SY, Joo EJ, et al. Clinical effectiveness of carbapenems versus alternative antibiotics for treating ESBL-producing Enterobacteriaceae bacteraemia: A systematic review and meta-analysis. J Antimicrob Chemother. 2018;73(10):2631-42. doi: 10.1093/jac/dky168. [PubMed: 29800480].
  8. Niumsup PR, Tansawai U, Na-Udom A, Jantapalaboon D, Assawatheptawee K, Kiddee A, et al. Prevalence and risk factors for intestinal carriage of CTX-M-type ESBLs in Enterobacteriaceae from a Thai Community. Eur J Clin Microbiol Infect Dis. 2018;37(1):69-75. doi: 10.1007/s10096-017-3102-9. [PubMed: 28918585].
  9. Rodriguez-Bano J, Gutierrez-Gutierrez B, Machuca I, Pascual A. Treatment of Infections caused by extended-spectrum-beta-lactamase-, AmpC-, and carbapenemase-producing Enterobacteriaceae. Clin Microbiol Rev. 2018;31(2). doi: 10.1128/CMR.00079-17. [PubMed: 29444952]. [PubMed Central: PMC5967687].
  10. Vanwynsberghe T, Verhamme K, Raymaekers M, Cartuyvels R, Vaerenbergh KV, Boel A, et al. A large hospital outbreak of Klebsiella pneumoniae (DHA-1 and SHV-11 Positive): Importance of detection and treatment of ampC β-lactamases. Open Infect Dis J. 2009;3(1):55-60. doi: 10.2174/1874279300903010055.
  11. Manchanda V, Singh NP. Occurrence and detection of AmpC beta-lactamases among Gram-negative clinical isolates using a modified three-dimensional test at Guru Tegh Bahadur Hospital, Delhi, India. J Antimicrob Chemother. 2003;51(2):415-8. doi: 10.1093/jac/dkg098. [PubMed: 12562713].
  12. Dallenne C, Da Costa A, Decre D, Favier C, Arlet G. Development of a set of multiplex PCR assays for the detection of genes encoding important beta-lactamases in Enterobacteriaceae. J Antimicrob Chemother. 2010;65(3):490-5. doi: 10.1093/jac/dkp498. [PubMed: 20071363].
  13. Pitout JD, Laupland KB. Extended-spectrum beta-lactamase-producing Enterobacteriaceae: An emerging public-health concern. Lancet Infect Dis. 2008;8(3):159-66. doi: 10.1016/S1473-3099(08)70041-0. [PubMed: 18291338].
  14. Hasani A, Mohammadzadeh A, Samadi Kafil H, Ahangarzadeh Rezaee M, Hasani A, Aghazadeh M. Characterization of TEM-, SHV-, CTX-and AmpC-type β-lactamases from cephalosporin resistant Escherichia coli isolates from Northwest of Iran. J Pure Appl Microbiol. 2015;9(4):3401-6.
  15. Sadeghi MR, Ghotaslou R, Akhi MT, Asgharzadeh M, Hasani A. Molecular characterization of extended-spectrum beta-lactamase, plasmid-mediated AmpC cephalosporinase and carbapenemase genes among Enterobacteriaceae isolates in five medical centres of East and West Azerbaijan, Iran. J Med Microbiol. 2016;65(11):1322-31. doi: 10.1099/jmm.0.000356. [PubMed: 27655293].
  16. Forbes BA, Sahm DF, Weissfeld AS. Study guide for Bailey and Scott's diagnostic microbiology. USA: Mosby; 2007.
  17. Nili NY, Alipourfard I. Antibiogram of extended spectrum beta-lactamase (ESBL) producing Escherichia coli and Klebsiella pneumoniae isolated from hospital samples. Bangladesh J Med Microbiol. 1970;4(1):32-6. doi: 10.3329/bjmm.v4i1.8467.
  18. Nourrisson C, Tan RN, Hennequin C, Gibold L, Bonnet R, Robin F. The MAST(R) D68C test: An interesting tool for detecting extended-spectrum beta-lactamase (ESBL)-producing Enterobacteriaceae. Eur J Clin Microbiol Infect Dis. 2015;34(5):975-83. doi: 10.1007/s10096-014-2305-6. [PubMed: 25586825].
  19. Marra AR, Pereira CA, Castelo A, do Carmo Filho JR, Cal RG, Sader HS, et al. Health and economic outcomes of the detection of Klebsiella pneumoniae-produced extended-spectrum beta-lactamase (ESBL) in a hospital with high prevalence of this infection. Int J Infect Dis. 2006;10(1):56-60. doi: 10.1016/j.ijid.2005.04.002. [PubMed: 16326126].
  20. Kashef N, Djavid GE, Shahbazi S. Antimicrobial susceptibility patterns of community-acquired uropathogens in Tehran, Iran. J Infect Dev Ctries. 2010;4(4):202-6. doi: 10.3855/jidc.540. [PubMed: 20440056].
  21. Luzzaro F, Mezzatesta M, Mugnaioli C, Perilli M, Stefani S, Amicosante G, et al. Trends in production of extended-spectrum beta-lactamases among enterobacteria of medical interest: Report of the second Italian Nationwide survey. J Clin Microbiol. 2006;44(5):1659-64. doi: 10.1128/JCM.44.5.1659-1664.2006. [PubMed: 16672390]. [PubMed Central: PMC1479207].
  22. Feizabadi MM, Delfani S, Raji N, Majnooni A, Aligholi M, Shahcheraghi F, et al. Distribution of bla(TEM), bla(SHV), bla(CTX-M) genes among clinical isolates of Klebsiella pneumoniae at Labbafinejad Hospital, Tehran, Iran. Microb Drug Resist. 2010;16(1):49-53. doi: 10.1089/mdr.2009.0096. [PubMed: 19961397].
  23. Peerayeh SN, Rostami E, Siadat SD, Derakhshan S. High rate of aminoglycoside resistance in CTX-M-15 producing Klebsiella pneumoniae isolates in Tehran, Iran. Lab Med. 2014;45(3):231-7. doi: 10.1309/LMDQQW246NYAHHAD. [PubMed: 25051075].
  24. Barguigua A, El Otmani F, Talmi M, Bourjilat F, Haouzane F, Zerouali K, et al. Characterization of extended-spectrum beta-lactamase-producing Escherichia coli and Klebsiella pneumoniae isolates from the community in Morocco. J Med Microbiol. 2011;60(Pt 9):1344-52. doi: 10.1099/jmm.0.032482-0. [PubMed: 21546559].
  25. Kim S, Sung JY, Cho HH, Kwon KC, Koo SH. Characterization of CTX-M-14- and CTX-M-15-producing Escherichia coli and Klebsiella pneumoniae isolates from urine specimens in a tertiary-care hospital. J Microbiol Biotechnol. 2014;24(6):765-70. doi: 10.4014/jmb.1306.06036. [PubMed: 24633230].
  26. Younas S, Ejaz H, Zafar A, Ejaz A, Saleem R, Javed H. AmpC beta-lactamases in Klebsiella pneumoniae: An emerging threat to the paediatric patients. J Pak Med Assoc. 2018;68(6):893-7. [PubMed: 30325907].
  27. Hanson ND. AmpC beta-lactamases: What do we need to know for the future? J Antimicrob Chemother. 2003;52(1):2-4. doi: 10.1093/jac/dkg284. [PubMed: 12775673].
  28. Petit A, Ben-Yaghlane-Bouslama H, Sofer L, Labia R. Characterization of chromosomally encoded penicillinases in clinical isolates of Klebsiella pneumoniae. J Antimicrob Chemother. 1992;29(6):629-38. doi: 10.1093/jac/29.6.629. [PubMed: 1506347].
  29. Vandana KE, Honnavar P. AmpC beta lactamases among ESBL producing Escherichia coli and Klebsiella pneumoniae-If you don’t look, you won’t find. J Clin Diagnos Res. 2009;3(4):1653-6.
  30. Ellem J, Thomas L, Olma T, Iredell J. Comparison and evaluation of a newly developed mast 4-disc test for the detection of plasmid mediated AmpC-β l-actamases. CiteSeerX. 2009.
  31. Li Y, Li Q, Du Y, Jiang X, Tang J, Wang J, et al. Prevalence of plasmid-mediated AmpC beta-lactamases in a Chinese University Hospital from 2003 to 2005: first report of CMY-2-Type AmpC beta-lactamase resistance in China. J Clin Microbiol. 2008;46(4):1317-21. doi: 10.1128/JCM.00073-07. [PubMed: 18305137]. [PubMed Central: PMC2292923].