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Abstract

Background: Lung adenocarcinoma (LUAD) is the most common histological subtype of non-small cell lung cancer with very poor
5-year overall survival (OS) rate. It is histopathologically difficult to predict clinical outcome in early-stage LUAD. Identifying reliable
prognostic biomarker is absolutely critical to benefit from early additional treatment for early-stage LUAD patients.

Objectives: The purpose of the current study was to identify critical genes as prognostic biomarkers in early-stage LUAD using gene
expression profiles based on the microarray.

Methods: In this bioinformatics-based cross-study, gene expression profiles from early-stage LUAD, including GSE10072 and
GSE19804 genes were integrated using bioinformatics methods, including differentially expressed gene analysis (DEGA), Kyoto En-
cyclopedia of Genes and Genomes (KEGG) pathway analysis, and protein-protein interaction (PPI) network construction. Subse-
quently, the survival analysis of key genes was performed using The Cancer Genome Atlas (TCGA) database and was validated using
online Gene Expression Profiling Interactive Analysis (GEPIA) database.

Results: A total of 89 up-regulated and 214 down-regulated genes were identified in early-stage LUAD, and the functional changes of
303 differentially expressed genes (DEGs) were mainly related to cell cycle. A PPI network was established by online STRING database
with 207 nodes and 775 edges. Centrality analysis showed that CDKN3 and UBE2C genes were identified as key genes implicated
in early-stage LUAD. Survival analysis revealed that low mRNA expressions of CDKN3 and UBE2C were significantly associated with
longer OS of early-stage LUAD patients.

Conclusions: This cross-study found key dysregulated genes involved in early-stage LUAD, which might provide insights into the
pathogenesis of early-stage LUAD, and identified UBE2C and CDKN3 might serve as potential diagnostic and prognostic biomarkers
and therapeutic targets for early-stage LUAD.
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1. Background

Lung cancer is the leading cause of cancer-related
death worldwide and results in more than 1.3 million
deaths annually (1). Non-small cell lung cancer (NSCLC)
is the most important pathological type and accounts for
about 85% of all lung cancer cases (2). Despite recent ad-
vances in multi-modality diagnosis and therapy, the major-
ity of NSCLC cases are diagnosed atan advanced stage (Il or
IVstage)(3), and the overall 5-year and 10-year survival rates
are only unoptimistically 17% and pessimistically 8-10% (4).
Given the difficulties in the treatment of advanced NSCLC,
the most promising way to improve outcomes may be an

effective diagnosis and treatment of early-stage NSCLC pa-
tients (5). Indeed, the early-stage efficient diagnosis of
NSCLC contribute to offer a favorable prognosis and the
overall 5-year survival rate will increase to 70-90% (6). Cur-
rently, disease stage and histological grade are the basis to
evaluate NSCLC diagnosis and prognosis. However, clin-
ical and pathological symptoms usually limit predictive
value in detecting early NSCLC, and clinical outcomes are
highly variable due to the heterogeneity of NSCLC. There-
fore, it is vital to identify potential diagnostic and prognos-
tic biomarkers and/or therapeutic targets for combating
NSCLC.

Lungadenocarcinoma (LUAD) is the most common his-
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tological subtype of NSCLC (7), resulting in more than 40%
lung cancer death per year and the morbidity and mor-
tality are increasing year by year (8). Although researches
have shown that smoking-tobacco accelerated LUAD de-
velopment, LUAD indicates the lowest association with
smoking-tobacco among all histological types and gene
aberrations often play key roles in triggering LUAD (9). De-
spite many gene aberrations during LUAD development,
LUAD is often triggered by an aberration of a driver gene
(7). Gene expression analysis is the most common tool to
identify differentially expressed genes (DEGs) between tu-
mor and normal tissues. Using gene expression profiles,
hundreds of LUAD-related DEGs were detected, including
some key driver genes such as epidermal growth factor re-
ceptor (EGFR) and anaplastic lymphoma kinase (ALK) (10-
13), and some gene expression signatures were found as
prognostic biomarkers (5). However, due to the hetero-
geneity of LUAD pathogenesis, those prognosticators have
been not widely accepted, and reliable, consistent prog-
nosticators based on gene expression need further elucida-
tion (5).

2. Objectives

The increasing available LUAD data makes it possible
to search consistent gene expression signatures. In this
study, two early-stage LUAD-related gene expression pro-
files, including GSE10072 and GSE19804 from NCBI GEO
database were integrated to detect DEGs involved in early-
stage LUAD. Kyoto Encyclopedia of Genes and Genomes
(KEGG) pathways related to the identified DEGs were in-
vestigated. A protein and protein interaction (PPI) net-
work of DEGs encoding proteins was constructed to elu-
cidate the interactive relationships among DEGs and cen-
trality analysis was used to identify key genes. Survival
analysis of key genes was performed to detect the associ-
ations of key genes and overall survival (OS) of early-stage
LUAD patients. Gene Expression Profiling Interactive Anal-
ysis (GEPIA) database was used to validate key genes related
to OS of LUAD patients.

3. Methods

3.1. Gene Expression Data Collection

In this bioinformatics-based cross-study, two
gene expression profiles associated with LUAD, in-
cluding GSE10072 and GSE19804 were retrieved from
the NCBI Gene Expression Omnibus database (GEO,
https://www.ncbi.nlm.nih.gov/geo[). GSE10072 data was
from American LUAD patients and consisted of 107 samples
that contained 58 LUAD samples and 49 normal samples
(11). GSE10072 data was produced using Affymetrix Human

Genome U133A Array platform. GSE19804 data was from
Taiwanese LUAD patients and contained 60 LUAD samples
and 60 normal samples (12). GSE19804 data was generated
using the Affymetrix Human Genome U133 Plus 2.0 Array
platform. Because two expression profiles contained the
data of all stages, the middle- and late-stage LUAD data
were removed, and the early-stage LUAD data was kept.
Finally, 83 samples (43 early-stage LUAD samples and 40
normal samples) for GSE10072 and 94 samples (47 early-
stage LUAD samples and 47 normal samples) for GSE19804
were used.

In this study, publicly available gene expression pro-
files from the NCBI GEO database were collected with pa-
tients’ consent approved by the relevant institutional re-
view board. GSE10072 data was approved by the Institu-
tional Review Board of the relevant participating hospi-
tal and by the National Cancer Institute (Bethesda, MD)
(11). GSE19804 data was approved by the Institutional Re-
view Board of Taiwan University Hospital and by the Insti-
tutional Review Board of Taichung Veterans General Hos-
pital (12). The present study met the requirements of data
usage and publishing from the NCBI GEO database.

3.2. Data Preprocessing and DEGs Screening

All raw data were standardized by a normalized
microarray preprocessing procedure using affy package
(version 1.60.0) in Bioconductor project (version 3.7.0,
http://[www.bioconductor.org/) to eliminate the expression
change caused by the experimental technique (14). Dif-
ferentially expressed gene analysis (DEGA) was performed
using the limma package (version 3.36.1) based empirical
Bayes method in the Bioconductor project to screen DEGs
(15). DEGs between LUAD and normal samples were iden-
tified according to |log2 (fold change) | (|logFC|) > 1 and
false discoveryrate (FDR) < 0.05 cutoff criteria. Commonly
dysregulated genes between GSE10072 and GSE19804 were
used for subsequent analyses.

3.3. KEGG Pathway Enrichment Analysis

KEGG pathway enrichment analysis of commonly dys-
regulated genes was performed using the clusterProfiler
package (version 3.10.0) in Bioconductor project (16) and
a KEGG pathway with an adjusted P < 0.05 was considered
to be statistically significant.

3.4. PPI Network Construction and Module Analysis

The interactive relationships among common DEGs
encoding proteins were analyzed by constructing a
PPI network. The interactive information among DEGs
was obtained by online STRING database (version 10.5,
https:/[string-db.org/) (17). The gene pairs with combined
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scores > 0.4 were used for PPl network construction. Cy-
toscape software (version 3.6.1, http://[www.cytoscape.org/)
was used to construct and visualize the PPI network (18).

To detect highly interconnected clusters (PPI subnet-
work) within the PPI network, topological properties were
analyzed using Molecular COmplex DEtection (MCODE) al-
gorithm, and a plugin MCODE (version 1.4.1) in Cytoscape
was used to perform MCODE analysis (19). The threshold
parameters were set for maximum depth =100, node score
=0.2,and K-core =2.

3.5. Key Gene Identification and Validation

Centrality analysis is a principal method for identify-
ing key DEGs encoding proteins in PPI network and Cy-
toNCA app (version 2.1.6) in Cytoscape was used to perform
centrality analysis (20). Three centrality methods in cen-
trality analyses, including Subgraph centrality, Degree cen-
trality,and Closeness centrality were used to identify genes
with higher PPI scores (20). Key genes were identified as
the intersecting genes of the genes obtained by three cen-
trality methods.

The early-stage LUAD data from The Cancer Genome At-
las (TCGA) database (https://cancergenome.nih.gov/) was
used to evaluate the associations between key genes and OS
in early-stage LUAD patients were estimated using Kaplan-
Meier (KM) estimate and Log-rank (LR) test in survival (ver-
sion 2.43-3) package in R project. A gene with statistical P
< 0.05was considered the significant association between
the gene and OS. GEPIA database (http://gepia.cancer-
pku.cn) was an interactive web server for analyzing gene
expression data of tumors and normal tissues from TCGA
and genotype-tissue expression database (21) and was used
to validate key genes related to OS of LUAD patients. Sur-
vival curve and boxplot were used to visualize the relation-
ships. Pearson correlation analysis was used to detect the
correlation of expression pattern between key genes re-
lated to OS. The statistical P< 0.05 was considered a signifi-
cant correlation between two genes in expression pattern.

3.6. Statistical Analysis

The comparison of expression of the key gene in LUAD
tissues and normal tissues was performed using the mean
+ standard deviation. Statistical differences were esti-
mated using t-test based on R language. P < 0.05 was con-
sidered a statistically significant difference.

4. Results

4.1. DEGs Identification

We used |logFC| > 1and FDR < 0.05 as detecting crite-
ria for screening DEGs between early-stage LUAD samples
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and normal samples from GSE10072 and GSE19804. Sub-
sequently, 503 DEGs, including 175 up-regulated DEGs and
328 down-regulated DEGs were extracted in GSE10072. Also,
745 DEGs, including 233 up-regulated DEGs and 512 down-
regulated DEGs were screened in GSE19804. An overlap-
ping analysis showed that 89 up-regulated and 214 down-
regulated genes were identified.

4.2. KEGG Pathway Evaluation

To better understand the roles of identified common
DEGs in early-stage LUAD, KEGG pathway enrichment anal-
ysis of common DEGs was performed. According to an
adjusted P < 0.05, 6 dysregulated pathways were found
to be significantly enriched (Table 1). Among them, 3
pathways were enriched by 89 up-regulated DEGs and
were protein digestion and absorption (hsa04974), ECM-
receptor interaction (hsa04512), and cell cycle (hsa04110).
The other 3 pathways were enriched by 214 down-regulated
DEGs, and were complement and coagulation cascades
(hsa04610), renin-angiotensin system (hsa04614), and
malaria (hsa05144).

4.3. PPI Network Construction and Module Identification

The interactive relationships among common DEGs en-
coding proteins were elucidated using the PPI network
and the interactive information among DEGs was obtained
from online STRING database. At a combined score >
0.4, a total of 207 DEGs (67 up-regulated and 140 down-
regulated) among 303 common DEGs was filtered into the
PPI network with 207 nodes and 775 edges (Figure 1A).
Highly correlated module analysis showed that 12 PP mod-
ules were found in the PPI network and the most signifi-
cant PP module was comprised of 22 nodes with 230 edges
(Figure 1B). Node degree analysis showed that 20 nodes
among 22 nodes interacted with each other and had closer
relationships. Significantly enriched 5 genes within the
cell cycle pathway, including BUB1B, CCNB1, CDC20, PTIGI,
and TTK were observed to exist in the most significant PPI
module.

4.4. Key Gene Identification

Centrality analyses were used to identify key genes in-
volved in early-stage LUAD. Based on the three centrality
methods, including Subgraph centrality, Degree centrality,
and Closeness centrality, Top 20 genes obtained by each
method were selected as key candidate genes (Table 2).
An overlapping analysis showed that 3 genes, including
cyclin-dependent kinase inhibitor 3 (CDKN3, logFC = 1.24,
and P =1.39e-12 in GSE10072, logFC =133 and P=7.32e-09 in
GSE19804), ubiquitin-conjugated enzyme E2 (UBE2C, logFC
=1.25,and P=1.62e-11in GSE10072, logFC=1.34 and P=6.69e-
12 in GSE19804), and enhancer of zeste homolog 2 (EZH2,
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Table 1. Pathway Enrichment Analysis of DEGs Function in Early-Stage LUAD

Pathway ID Description Adjusted P Value Count Gene Symbol

Up-regulated
hsa04974 Protein digestion and absorption 8.20e-5 7 COL10A1, COL11A1, COL1A1, COL1A2, COL3A1, COL5A1, COL5A2
hsao04512 ECM-receptor interaction 5.23e3 5 COL1A1, COL1A2, COMP, SPP1, THBS2
hsao4110 The cell cycle 2.37e-2 5 BUBIB, CCNB1, CDC20, PTTG1, TTK

Down-regulated
hsa04610 Complement and coagulation cascades 3.36e-6 1 C4BPA, C5AR1, C7, CFD, CPB2, F8, PROS1, SERPING1, THBD, VSIG4, VWF
hsa04614 Renin-angiotensin system 3.01e-2 4 AGTR1,AGTR2, CPA3, MME
hsa05144 Malaria 4.58e-2 5 ACKR1, CD36, HBB, IL6, PECAM1

Abbreviation: LUAD, lung adenocarcinoma.

logFC =1.09, and P = 5.72e-09 in GSE10072, logFC = 1.11 and
P =1.55e-07 in GSE19804) were intersecting genes of top 20
genes obtained by three methods.

Compared with the 22 genes in the most significant PPI
module, those 3 intersecting genes were included in the
most significant PPl module (Figure 1C), and had closer re-
lationships with 5 genes enriched within cell cycle path-
way (Figure 1B). However, the combined scores and co-
expression scores of EZH2 and those 5 genes were the low-
est. The PPI network based on each gene confirmed the
result. At a maximum number of interactors < 20, both
CDKN3 and UBE2C had closer relationships with 5 genes;
however, 5 genes did not appear in EZH2-based PPI network
(Figure 1D). As we know, the cell cycle pathway is strongly
associated with the occurrence of many types of tumors.
Thus CDKN3 and UBE2C genes were selected as key genes im-
plicated in early-stage LUAD.

4.5. Survival Analysis of Key Gene

KM (LR test) method was used to evaluate the associ-
ations of the two key genes and OS. The results showed
that low mRNA expression of UBE2C and CDKN3 resulted
in a higher OS rate than high mRNA expression (P = 0.037,
0.019, respectively) (Figure 2A). The mRNA expressions of
UBE2C and CDKN3 were significantly higher in early-stage
LUAD tissues than that in normal tissues (P < 0.01) (Figure
2B).

The expression analysis based on GEPIA database
showed that UBE2C and CDKN3 were significantly highly
expressed in all-stage LUAD tissues than in normal tis-
sues (P < 0.01) (Figure 2C), and low mRNA expression of
UBE2C and CDKN3 resulted in a higher OS rate than high
expression (P = 0.021, 0.00021, respectively) (Figure 2D).
Gene expression analysis in various stages showed that
the expressions of UBE2C and CDKN3 were significantly dif-
ferent in four stages, and the expression of both genes
was at the lowest level in early-stage LUAD tissues (P =

0.00245, 0.00398, respectively) (Figure 2E). Pearson corre-
lation analysis showed that both genes had similar expres-
sion patterns in LUAD tissues (R = 0.61, P = 0) and normal
tissues (R=0.6, P =4.5e-7) (Figure 3).

5. Discussion

LUAD is a complex malignant disease caused by gene
aberration with a very poor 5-year OS. Identifying prognos-
tic biomarkers in early-stage LUAD will contribute to offer
a favorable prognosis. However, a widely accepted prog-
nosticator has still not been found. A consistent reliable
prognosticator based on gene expression is urgently re-
quired. In this study, we utilized bioinformatics strategy
to integrate and analyze two early-stage LUAD-related gene
expression profiles. Finally, we identified that UBE2C and
CDKN3 genes were significantly associated with the prog-
nosis of early-stage LUAD patients, and low mRNA expres-
sions of UBE2C and CDKN3 resulted in a higher OS rate.

CDKN3 gene encodes the protein cyclin-dependent ki-
nase inhibitor 3 that belongs to the dual specificity protein
phosphatase family and possesses dual specificity phos-
phatase active toward substrates containing either phos-
photyrosine or phosphoserine residues (22). The CDKN3
plays important roles as oncogene or tumor suppressor
gene in cell cycle regulation (23, 24). Many studies showed
that CDKN3 was able to promote tumor development and
progression in many tumors such as gastric cancer, breast
cancer, cervical cancer, colorectal cancer, and ovarian can-
cer (25-28). In gastric cancer tissues, CDKN3 was frequently
up-regulated and related to poor outcome (28). In breast
cancer and prostate cancer, high expression of CDKN3
could promote cancer cell proliferation and phenotypic
transformation (24, 29). In ovarian cancer, high expression
of CDKN3 enhanced cell invasion (25). In LUAD, Fan et al.
found that overexpression and high expression of CDKN3
were associated with a poor survival rate in patients (30).
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Table 2. Top 20 Genes Obtained by Three Centrality Methods

Rank Subgraph Centrality Degree Centrality Closeness Centrality

Gene Subgraph Gene Degree Gene Closeness
1 UBE2C 90198016 IL6 54 IL6 0.076923
2 CCNB1 89298184 TOP2A 32 EDN1 0.076099
3 TOP2A 88912720 EDN1 32 FOS 0.075210
4 NDC80 86147896 EZH2 28 SPP1 0.075100
5 RRM2 86138048 UBE2C 26 VWF 0.074746
6 PRC1 86119328 CCNB1 26 EGR1 0.074611
7 BUB1B 86119328 NDC80 25 EZH2 0.074530
8 CDKN3 84999024 FOS 25 TIMP3 0.074530
9 KIF11 84680504 CDKN3 24 CIGF 0.074449
10 ZWINT 84680480 CDC20 24 COL1A1 0.074368
1 TIK 84680480 VWF 24 CD36 0.074021
12 EZH2 83511584 RRM2 23 MMP1 0.073941
13 CDC20 83265864 PRC1 23 BMP2 0.073941
14 CEP55 82918712 BUBIB 23 MMP7 0.073888
15 PTTG1 82562288 CEP55 23 CAV1 0.073888
16 KIF4A 81135504 KIF11 22 COL1A2 0.073862
17 NUSAP1 81135504 ZWINT 22 CDKN3 0.073729
18 DLGAP5 81135504 TIK 22 UBE2C 0.073677
19 MELK 81135504 PTTG1 22 ID1 0.073677
20 PX2 81135480 KIF4A 21 TEK 0.073677

Currently, CDKN3 has been recommended as a good candi-
date survival biomarker and potential therapeutic target
in some cancers such as cervical cancer (26). The CDKN3 has
not been reported as a prognostic biomarker of early-stage
LUAD. Our results confirmed that the expression of CDKN3
was higher in early-stage LUAD tissues than that in normal
tissues and low expression of CDKN3 increased longer OS
rate of LUAD patients, which indicated that CDKN3 might
serve as a good prognostic biomarker for early-stage LUAD.

UBE2C gene encodes UBE2C protein that belongs to the
ubiquitin-conjugating enzyme family. Abnormal expres-
sion of UBE2C gene can lead to an increase of chromosomal
instability, and promote the occurrence and development
of a tumor (31). Many studies have proved the carcinogenic
effect of UBE2C in cervix, thyroid, nasopharynx, mammary
gland, and lung (31). Currently, UBE2C has been identi-
fied as a prognostic marker of breast cancer, gastric can-
cer, glioma, and bladder cancer (32-37). In lung cancer, few
studies reported that deregulation of UBE2C could aggra-
vate NSCLC progression by repressing autophagy (38). The
present results showed that UBE2C was highly expressed in
early-stage LUAD tissues, and low expression of UBE2C was
associated with a longer OS in LUAD patients, which indi-
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cated that UBE2C could also be as a prognostic predictor of
early-stage LUAD.

The cell cycle is the basic process of cell life,and numer-
ous studies have shown that the cell cycle played key roles
in the formation of various malignant tumors (39). The
present study demonstrated that the cell cycle was signifi-
cantly enriched (P =2.37e-2) with 5 genes, including BUBIB,
CCNB1, CDC20, PTTG1, and TIK. These 5 genes and two key
genes had closer interaction relationships with each other
(Figure 1B and D), which indicated that CDKN3 and UBE2C
might play roles by interacting with those 5 genes within
the cell cycle. The results further revealed that CDKN3 and
UBE2C might serve as potential biomarkers of LUAD diag-
nosis and prognosis and therapeutic targets of LUAD ther-
apy atan early stage.

The strength of the current study was first to integrate
early-stage LUAD-related gene expression profiles to iden-
tify key genes implicated in early-stage LUAD using bioin-
formatics methods, including DEGA, KEGG pathway anal-
ysis, PPl network, centrality analysis, and survival analysis.
This study not only found DEGs in early-stage LUAD and elu-
cidated the relationships among DEGs but also identified
key genes associated with OS of early-stage LUAD patients.
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Figure 1. PPI network and module analysis. (A) Using STRING database, 207 (67 up-regulated and 140 down-regulated) of 303 DEGs were filtered into PPI network. The red and
green nodes stood for up-regulated and down-regulated genes, respectively. Bigger nodes and labels represented genes with more links. PPI subnetwork in blue circle was the
most significantly highly correlated module, and contained 22 nodes and 230 edges. The CDKN3, UBE2C, and EZH2 genes were included in the PPI subnetwork and had more
links. (B) The most significant PPI module consisted of 22 nodes with 230 edges. Bigger nodes represented genes with more links. Thicker edges represented higher combined
scores among genes. Deeper color edges (red to blue) represented higher co-expression scores among genes. (C) Intersecting genes were identified by overlap analysis. Three
genes, including CDKN3, UBE2C, and EZH2 were identified as intersecting genes in early-stage lung adenocarcinoma. (D) PPI network of single gene based on STRING database.

The major limitation of the current study was thatourre-  though the results have been validated using public gene
sults were obtained by pure bioinformatics methods. Al- expression data, the results were not confirmed by experi-
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Figure 2. Survival curves and expression of key genes. (A) Low mRNA expression of UBE2C and CDKN3 was significantly associated with overall survival of patients with early-
stage LUAD. (B) The GSE10072 and GSE19804 data showed higher mRNA expression of CDKN3 and UBE2C in early-stage LUAD tissues than in normal lung tissues (P < 0.01). (C)
The expression analysis based on GEPIA database showed that UBE2C and CDKN3 were significantly higher expression in all-stage LUAD tissues than in normal tissues. (D) Low
mRNA expression of UBE2C and CDKN3 resulted in a higher OS rate than high mRNA expression. (E) The mRNA expression of UBE2C and CDKN3 was significantly different in
four stages, and the mRNA expression of both genes was at the lowest level in early-stage LUAD tissues. LUAD: Lung adenocarcinoma.

ments. Next, we would verify the key genes associated with  5.1. Conclusion

OS by experiments to confirm the association of key genes In the present study, UBE2C and CDKN3 were identified

and OS. as key genes to play roles in early-stage LUAD and served
as potential prognostic biomarkers for early-stage LUAD.
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However, more experiments need to validate these prog-
nosticators.

Acknowledgments

The authors thank Xiangqing Zhu and Xinghua Pan of
Nation and Region Integrated Engineering Laboratory of
Stem Cell and Immunocyte Biological Technology for help-
ing to discuss this manuscript.

Footnotes

Authors’ Contribution: Qiang Chen designed and su-
pervised the study. Lutong Xu and Jing Hu searched the
microarray from NCBI GEO database, performed DEGA,
pathway enrichment analysis, PPI network construction,
and survival analysis with the help of Tonglian Wang,
Kang Zhang, and Yuanyue Li. Lutong Xu and Jing Hu
contributed equally in this study. Qiang Chen wrote the
manuscript with the help of Lutong Xu and Hongbo Zhao.
Tao Shou revised the manuscript. All authors have read the
manuscript and approved it.

Conflict of Interests: All authors declare that they have no
competing interests.

Ethical Considerations: Itis not declared by the author.
Financial Disclosure: All authors declare that they have
no personal or professional financial conflicts.

Funding/Support: This work was supported by National
Natural Science Foundation of China (grant No. 31660655),

Yunnan Province Applied Basic Research Projects (grant
No. 2016FB146 and 2018FE001), and Fund from Health and
Family Planning Commission of Yunnan Province (grant
No. 2017NS261).

Patient Consent: In this study, publicly available gene ex-
pression profiles from NCBI GEO database were collected
with patients’ consent approved by the relevant institu-
tional review board.

References

1. Torre LA, Siegel RL, Jemal A. Lung cancer statistics. Adv Exp Med Biol.
2016;893:1-19. doi: 10.1007/978-3-319-24223-1_1. [PubMed: 26667336].

2. Blandin Knight S, Crosbie PA, Balata H, Chudziak ], Hussell T, Dive C.
Progress and prospects of early detection in lung cancer. Open Biol.
2017;7(9). doi: 10.1098/rsob.170070. [PubMed: 28878044]. [PubMed
Central: PMC5627048].

3. Walters S, Maringe C, Coleman MP, Peake MD, Butler |, Young N, et al.
Lung cancer survival and stage at diagnosis in Australia, Canada, Den-
mark, Norway, Sweden and the UK: A population-based study, 2004-
2007. Thorax. 2013;68(6):551-64. doi: 10.1136/thoraxjnl-2012-202297.
[PubMed: 23399908].

4. WuK,HouseL, Liu W, Cho WC. Personalized targeted therapy for lung
cancer. Int | Mol Sci. 2012;13(9):11471-96. doi: 10.3390/ijms130911471.
[PubMed: 23109866]. [PubMed Central: PMC3472758].

5. Krzystanek M, Moldvay ], Szuts D, Szallasi Z, EkKlund AC. A robust prog-
nostic gene expression signature for early stage lung adenocarci-
noma. Biomark Res. 2016;4:4. doi: 10.1186/s40364-016-0058-3. [PubMed:
26900477]. [PubMed Central: PMC4761211].

6. Nesbitt JC, Putnam JB Jr, Walsh GL, Roth JA, Mountain CF. Sur-
vival in early-stage non-small cell lung cancer. Ann Thorac Surg.
1995;60(2):466-72. [PubMed: 7646126].

7. Saito M, Shiraishi K, Kunitoh H, Takenoshita S, Yokota ], Kohno T.
Gene aberrations for precision medicine against lung adenocarci-

Iran Red Crescent Med J. 2019; 21(3):e86174.


http://dx.doi.org/10.1007/978-3-319-24223-1_1
http://www.ncbi.nlm.nih.gov/pubmed/26667336
http://dx.doi.org/10.1098/rsob.170070
http://www.ncbi.nlm.nih.gov/pubmed/28878044
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5627048
http://dx.doi.org/10.1136/thoraxjnl-2012-202297
http://www.ncbi.nlm.nih.gov/pubmed/23399908
http://dx.doi.org/10.3390/ijms130911471
http://www.ncbi.nlm.nih.gov/pubmed/23109866
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3472758
http://dx.doi.org/10.1186/s40364-016-0058-3
http://www.ncbi.nlm.nih.gov/pubmed/26900477
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4761211
http://www.ncbi.nlm.nih.gov/pubmed/7646126
http://ircmj.com

Chen Qetal.

10.

1.

13.

14.

16.

17.

18.

19.

20.

21

22.

23.

24.

noma. Cancer Sci. 2016;107(6):713-20. doi: 10.1111/cas.12941. [PubMed:
27027665]. [PubMed Central: PMC4968599].

Zhao ], Li L, Wang Q, Han H, Zhan Q, Xu M. CircRNA expression pro-
file in early-stage lung adenocarcinoma patients. Cell Physiol Biochem.
2017;44(6):2138-46. doi: 10.1159/000485953. [PubMed: 29241190].
Pasche B, Grant SC. Non-small cell lung cancer and precision
medicine: A model for the incorporation of genomic fea-
tures into clinical trial design. JAMA. 2014;311(19):1975-6. doi:
10.1001/jama.2014.3742. [PubMed: 24846033].

He X, Zhang C, Shi C, Lu Q. Meta-analysis of mRNA expression profiles
to identify differentially expressed genes in lung adenocarcinoma tis-
sue from smokers and non-smokers. Oncol Rep. 2018;39(3):929-38. doi:
10.3892/0r.2018.6197. [PubMed: 29328493].

Landi MT, Dracheva T, Rotunno M, Figueroa |JD, Liu H, Dasgupta A,
et al. Gene expression signature of cigarette smoking and its role in
lung adenocarcinoma development and survival. PLoS One.2008;3(2).
e1651. doi: 10.1371/journal.pone.0001651. [PubMed: 18297132]. [PubMed
Central: PMC2249927].

. LuTP, Tsai MH, Lee JM, Hsu CP, Chen PC, Lin CW, et al. Identification of

anovel biomarker, SEMASA, for non-small cell lung carcinoma in non-
smoking women. Cancer Epidemiol Biomarkers Prev. 2010;19(10):2590-
7.doi: 10.1158/1055-9965.EPI-10-0332. [PubMed: 20802022].

Caliez ], Monnet I, Pujals A, Rousseau-Bussac G, Jabot L, Boudjemaa A,
et al. [Lung adenocarcinoma with concomitant EGFR mutation and
ALK rearrangement]. Rev Mal Respir. 2017;34(5):576-80. French. doi:
10.1016/j.rmr.2016.08.002. [PubMed: 27646667].

Gautier L, Cope L, Bolstad BM, Irizarry RA. affy-analysis of Affymetrix
GeneChip data at the probe level. Bioinformatics. 2004;20(3):307-15.
doi: 10.1093/bioinformatics/btg405. [PubMed: 14960456].

. Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W, et al. limma pow-

ers differential expression analyses for RNA-sequencing and microar-
ray studies. Nucleic Acids Res. 2015;43(7). e47. doi: 10.1093/nar/gkv007.
[PubMed: 25605792]. [PubMed Central: PMC4402510].

Yu G, Wang LG, Han Y, He QY. clusterProfiler: An R package for com-
paring biological themes among gene clusters. OMICS. 2012;16(5):284-
7. doi: 10.1089/0mi.2011.0118. [PubMed: 22455463]. [PubMed Central:
PM(3339379].

Szklarczyk D, Franceschini A, Wyder S, Forslund K, Heller D, Huerta-
Cepas ], et al. STRING v10: Protein-protein interaction networks,
integrated over the tree of life. Nucleic Acids Res. 2015;43(Database
issue):D447-52. doi: 10.1093/nar/gku1003. [PubMed: 25352553].
[PubMed Central: PMC4383874].

Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, et
al. Cytoscape: A software environment for integrated models of
biomolecular interaction networks. Genome Res. 2003;13(11):2498-
504. doi: 10.1101/gr.1239303. [PubMed: 14597658]. [PubMed Central:
PMC403769].

Bader GD, Hogue CW. An automated method for finding molecular
complexes in large protein interaction networks. BMC Bioinformatics.
2003;4:2. [PubMed: 12525261]. [PubMed Central: PMC149346].

Tang Y, Li M, Wang ], Pan Y, Wu FX. CytoNCA: A cytoscape plugin for
centrality analysis and evaluation of protein interaction networks.
Biosystems. 2015;127:67-72. doi:  10.1016/j.biosystems.2014.11.005.
[PubMed: 25451770].

Tang Z, Li C, Kang B, Gao G, Li C, Zhang Z. GEPIA: A web server for
cancer and normal gene expression profiling and interactive analy-
ses. Nucleic Acids Res. 2017;45(W1):W98-W102. doi: 10.1093/nar/gkx247.
[PubMed: 28407145]. [PubMed Central: PMC5570223].

Cress WD, Yu P, Wu J. Expression and alternative splicing of the cyclin-
dependent kinase inhibitor-3 gene in human cancer. Int ] Biochem Cell
Biol. 2017;91(Pt B):98-101. doi: 10.1016(j.biocel.2017.05.013. [PubMed:
28504190]. [PubMed Central: PMC5641230].

Nalepa G, Barnholtz-Sloan ], Enzor R, Dey D, He Y, Gehlhausen JR,
et al. The tumor suppressor CDKN3 controls mitosis. | Cell Biol.
2013;201(7):997-1012. doi: 10.1083/jcb.201205125. [PubMed: 23775190].

[PubMed Central: PMC3691455].
Yu C, Cao H, He X, Sun P, Feng Y, Chen L, et al. Cyclin-dependent kinase

Iran Red Crescent Med J. 2019; 21(3):e86174.

25.

26.

27.

28.

29.

30.

3L

32.

33.

34.

35.

36.

37.

38.

39.

inhibitor 3 (CDKN3) plays a critical role in prostate cancer via regu-
lating cell cycle and DNA replication signaling. Biomed Pharmacother.
2017;96:1109-18. doi: 10.1016/j.biopha.2017.11.112. [PubMed: 29196103].
Zhang LP, Li W], Zhu YF, Huang SY, Fang SY, Shen L, et al. CDKN3
knockdown reduces cell proliferation, invasion and promotes apop-
tosis in human ovarian cancer. Int J Clin Exp Pathol. 2015;8(5):4535-44.
[PubMed: 26191143]. [PubMed Central: PMC4503015].

Barron EV, Roman-Bassaure E, Sanchez-Sandoval AL, Espinosa AM,
Guardado-Estrada M, Medina I, et al. CDKN3 mRNA as a biomarker
for survival and therapeutic target in cervical cancer. PLoS One.
2015;10(9). e0137397. doi: 10.1371fjournal.pone.0137397. [PubMed:
26372210]. [PubMed Central: PMC4570808].

Yang C, Sun JJ. Mechanistic studies of cyclin-dependent kinase in-
hibitor 3 (CDKN3) in colorectal cancer. Asian Pac | Cancer Prev.
2015;16(3):965-70. [PubMed: 25735390].

Li Y, Ji S, Fu LY, Jiang T, Wu D, Meng FD. Knockdown of cyclin-
dependent kinase inhibitor 3 inhibits proliferation and invasion
in human gastric cancer cells. Oncol Res. 2017;25(5):721-31. doi:
10.3727/096504016X14772375848616. [PubMed: 27983933].

Deng M, Wang |, Chen Y, Zhang L, Xie G, Liu Q, et al. Silencing
cyclin-dependent kinase inhibitor 3 inhibits the migration of
breast cancer cell lines. Mol Med Rep. 2016;14(2):1523-30. doi:
10.3892/mmr.2016.5401. [PubMed: 27314680]. [PubMed Central:
PMC4940103].

Fan C, Chen L, Huang Q, Shen T, Welsh EA, Teer JK, et al. Over-
expression of major CDKN3 transcripts is associated with poor
survival in lung adenocarcinoma. Br J Cancer. 2015;113(12):1735-43.
doi: 10.1038/bjc.2015.378. [PubMed: 26554648]. [PubMed Central:
PMC4701993].

Hao Z, Zhang H, Cowell ]. Ubiquitin-conjugating enzyme UBE2C:
Molecular biology, role in tumorigenesis, and potential as a
biomarker. Tumour Biol. 2012;33(3):723-30. doi: 10.1007/s13277-011-
0291-1. [PubMed: 22170434].

Loussouarn D, Campion L, Leclair F, Campone M, Charbonnel C,
Ricolleau G, et al. Validation of UBE2C protein as a prognostic
marker in node-positive breast cancer. Br | Cancer. 2009;101(1):166-
73. doi: 10.1038sj.bjc.6605122. [PubMed: 19513072]. [PubMed Central:
PMC2713693].

Zhang HQ, Zhao G, Ke B, Ma G, Liu GL, Liang H, et al. Overexpression
of UBE2C correlates with poor prognosis in gastric cancer patients.
Eur Rev Med Pharmacol Sci. 2018;22(6):1665-71. doi: 10.26355/eurrev_-
201803_14578. [PubMed: 29630110].

Zhang |, Liu X, Yu G, Liu L, Wang ], Chen X, et al. UBE2C is a poten-
tial biomarker of intestinal-type gastric cancer with chromosomal
instability. Front Pharmacol. 2018;9:847. doi: 10.3389/fphar.2018.00847.
[PubMed: 30116193]. [PubMed Central: PMC6082955].

Psyrri A, Kalogeras KT, Kronenwett R, Wirtz RM, Batistatou A, Bour-
nakis E, et al. Prognostic significance of UBE2C mRNA expression
in high-risk early breast cancer. A hellenic cooperative oncology
group (HeCOG) study. Ann Oncol. 2012;23(6):1422-7. doi: 10.1093/an-
nonc/mdr527. [PubMed: 22056852].

MaR, Kang X, Zhang G, Fang F, Du Y, Lv H. High expression of UBE2C is
associated with the aggressive progression and poor outcome of ma-
lignant glioma. Oncol Lett. 2016;11(3):2300-4. doi: 10.3892/01.2016.4171.
[PubMed: 26998166]. [PubMed Central: PMC4774622].

Morikawa T, Kawai T, Abe H, Kume H, Homma Y, Fukayama M. UBE2C
is a marker of unfavorable prognosis in bladder cancer after radical
cystectomy. Int] Clin Exp Pathol. 2013;6(7):1367-74. [PubMed: 23826418].
[PubMed Central: PMC3693202].

Guo |, Wu Y, Du |, Yang L, Chen W, Gong K, et al. Deregulation
of UBE2C-mediated autophagy repression aggravates NSCLC pro-
gression. Oncogenesis. 2018;7(6):49. doi: 10.1038/s41389-018-0054-6.
[PubMed: 29904125]. [PubMed Central: PMC6002383].

Liu S, Yang TB, Nan YL, Li AH, Pan DX, Xu Y, et al. Genetic variants of
cell cycle pathway genes predict disease-free survival of hepatocellu-
lar carcinoma. Cancer Med. 2017;6(7):1512-22. doi: 10.1002/cam4.1067.


http://dx.doi.org/10.1111/cas.12941
http://www.ncbi.nlm.nih.gov/pubmed/27027665
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4968599
http://dx.doi.org/10.1159/000485953
http://www.ncbi.nlm.nih.gov/pubmed/29241190
http://dx.doi.org/10.1001/jama.2014.3742
http://www.ncbi.nlm.nih.gov/pubmed/24846033
http://dx.doi.org/10.3892/or.2018.6197
http://www.ncbi.nlm.nih.gov/pubmed/29328493
http://dx.doi.org/10.1371/journal.pone.0001651
http://www.ncbi.nlm.nih.gov/pubmed/18297132
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2249927
http://dx.doi.org/10.1158/1055-9965.EPI-10-0332
http://www.ncbi.nlm.nih.gov/pubmed/20802022
http://dx.doi.org/10.1016/j.rmr.2016.08.002
http://www.ncbi.nlm.nih.gov/pubmed/27646667
http://dx.doi.org/10.1093/bioinformatics/btg405
http://www.ncbi.nlm.nih.gov/pubmed/14960456
http://dx.doi.org/10.1093/nar/gkv007
http://www.ncbi.nlm.nih.gov/pubmed/25605792
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4402510
http://dx.doi.org/10.1089/omi.2011.0118
http://www.ncbi.nlm.nih.gov/pubmed/22455463
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3339379
http://dx.doi.org/10.1093/nar/gku1003
http://www.ncbi.nlm.nih.gov/pubmed/25352553
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4383874
http://dx.doi.org/10.1101/gr.1239303
http://www.ncbi.nlm.nih.gov/pubmed/14597658
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC403769
http://www.ncbi.nlm.nih.gov/pubmed/12525261
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC149346
http://dx.doi.org/10.1016/j.biosystems.2014.11.005
http://www.ncbi.nlm.nih.gov/pubmed/25451770
http://dx.doi.org/10.1093/nar/gkx247
http://www.ncbi.nlm.nih.gov/pubmed/28407145
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5570223
http://dx.doi.org/10.1016/j.biocel.2017.05.013
http://www.ncbi.nlm.nih.gov/pubmed/28504190
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5641230
http://dx.doi.org/10.1083/jcb.201205125
http://www.ncbi.nlm.nih.gov/pubmed/23775190
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3691455
http://dx.doi.org/10.1016/j.biopha.2017.11.112
http://www.ncbi.nlm.nih.gov/pubmed/29196103
http://www.ncbi.nlm.nih.gov/pubmed/26191143
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4503015
http://dx.doi.org/10.1371/journal.pone.0137397
http://www.ncbi.nlm.nih.gov/pubmed/26372210
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4570808
http://www.ncbi.nlm.nih.gov/pubmed/25735390
http://dx.doi.org/10.3727/096504016X14772375848616
http://www.ncbi.nlm.nih.gov/pubmed/27983933
http://dx.doi.org/10.3892/mmr.2016.5401
http://www.ncbi.nlm.nih.gov/pubmed/27314680
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4940103
http://dx.doi.org/10.1038/bjc.2015.378
http://www.ncbi.nlm.nih.gov/pubmed/26554648
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4701993
http://dx.doi.org/10.1007/s13277-011-0291-1
http://dx.doi.org/10.1007/s13277-011-0291-1
http://www.ncbi.nlm.nih.gov/pubmed/22170434
http://dx.doi.org/10.1038/sj.bjc.6605122
http://www.ncbi.nlm.nih.gov/pubmed/19513072
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2713693
http://dx.doi.org/10.26355/eurrev_201803_14578
http://dx.doi.org/10.26355/eurrev_201803_14578
http://www.ncbi.nlm.nih.gov/pubmed/29630110
http://dx.doi.org/10.3389/fphar.2018.00847
http://www.ncbi.nlm.nih.gov/pubmed/30116193
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6082955
http://dx.doi.org/10.1093/annonc/mdr527
http://dx.doi.org/10.1093/annonc/mdr527
http://www.ncbi.nlm.nih.gov/pubmed/22056852
http://dx.doi.org/10.3892/ol.2016.4171
http://www.ncbi.nlm.nih.gov/pubmed/26998166
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4774622
http://www.ncbi.nlm.nih.gov/pubmed/23826418
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3693202
http://dx.doi.org/10.1038/s41389-018-0054-6
http://www.ncbi.nlm.nih.gov/pubmed/29904125
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6002383
http://dx.doi.org/10.1002/cam4.1067
http://ircmj.com

Chen Qetal.

10

[PubMed: 28639733]. [PubMed Central: PMC5504311].

Iran Red Crescent Med J. 2019; 21(3):e86174.


http://www.ncbi.nlm.nih.gov/pubmed/28639733
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5504311
http://ircmj.com

	Abstract
	1. Background
	2. Objectives
	3. Methods
	3.1. Gene Expression Data Collection
	3.2. Data Preprocessing and DEGs Screening
	3.3. KEGG Pathway Enrichment Analysis
	3.4. PPI Network Construction and Module Analysis
	3.5. Key Gene Identification and Validation
	3.6. Statistical Analysis

	4. Results
	4.1. DEGs Identification
	4.2. KEGG Pathway Evaluation
	Table 1

	4.3. PPI Network Construction and Module Identification
	4.4. Key Gene Identification
	Table 2
	Figure 1

	4.5. Survival Analysis of Key Gene
	Figure 2
	Figure 3


	5. Discussion
	5.1. Conclusion

	Acknowledgments
	Footnotes
	Authors' Contribution: 
	Conflict of Interests
	Ethical Considerations: 
	Financial Disclosure: 
	Funding/Support: 
	Patient Consent

	References

