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Abstract

Background: Tissue engineering is an available treatment for large bone defects. The therapeutic effects of mesenchymal stem
cell (MSC) are mostly attributed to secretion of many cytokines and growth factors. Many factors of MSC secretions accumulate in a
conditioned medium and these factors recruit native cells into a defect site to generate new bone tissues.
Objectives: The aim of this study was to evaluate the influence of adipose tissue derived MSCs-conditioned medium (ADMSC-CM)
on bone repair of rats with critical - size calvarial defect.
Methods: This experimental study was performed at Shahid Beheshti University of Medical Sciences, Tehran, Iran, from 2016 to 2017.
Conditioned medium was collected from healthy rat adipose tissue derived MSC (ADMSC) at passage four. Calvarial bone defect was
created in hypothyroid rats using a dental bur. Sampling was taken by the linear-mono-gram method to determine sample size (n
= 6 per group). The rats were divided randomly into four groups based on graft material as follows: empty defect, scaffold (Bio-Oss /
type I collagen gel), scaffold / ADMSCs, scaffold /ADMSC- CM. Evaluations were made at 4 and 8 weeks after surgery using stereological
analysis.
Results: Histological analysis at 8 weeks indicated that the newly regenerated tissue almost covered the defect in the ADMSC-CM
group. Stereological analysis showed that ADMSC-CM increased regenerated bone and numbers of osteocytes and osteoblasts com-
pared with the defect and scaffold groups (P < 0.05). Also, bone regeneration was more effective in animals treated with ADMSC-CM
than in those received ADMSC.
Conclusions: These results suggest an important role for ADMSC-CM in bone regeneration, through trophic impact of its cytokines
and growth factors that induce native cell proliferation and migration into the defect. Thus, ADMSC-CM seems to have good potential
for application in bone tissue regeneration, in the cases of hypothyroidism.
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1. Background

Thyroid hormones play an essential role in bone
growth, development and turnover processes by regulat-
ing bone formation and resorption (1). In hypothyroidism,
there is reduced bone turnover in trabecular and cortical
bones and an increase in bone resorption that can lead to
a negative calcium balance and result in bone loss (2-4). In
children, hypothyroidism causes delayed skeletal matura-
tion and growth arrest (5). In addition, treatment with thy-
roxine during childhood causes accelerated skeletal matu-
ration and premature epiphyseal growth plate fusion and
causes short stature (6). Some studies have shown that os-
teogenesis in the defect area is reduced in models with hy-

pothyroidism (7, 8). This can be attributed to inhibited en-
dochondral ossification in hypothyroidism (9). In general,
it is expected that thyroid hormone deficiency leads to ab-
normal bone regeneration (10). Hypothyroidism can oc-
cur at all stages of life and is caused by number of factors
including autoimmune disease, thyroid surgery, radiation
therapy, medication and treatment for hyperthyroidism
(2). Accordingly, introduction of a method to treat bone
problems caused by hypothyroidism would be very useful.
There are several clinical methods for reconstruction of
bone defects caused by trauma, congenital deformity and
tumor resection. The method of autogenous bone graft-
ing is often considered as the “gold standard” for bone re-

Copyright © 2017, Iranian Red Crescent Medical Journal. This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0
International License (http://creativecommons.org/licenses/by-nc/4.0/) which permits copy and redistribute the material just in noncommercial usages, provided the
original work is properly cited.

http://ircmj.neoscriber.org
http://dx.doi.org/10.5812/ircmj.45516


Sanchooli T et al.

pair, because of strong osteogenic characteristics and does
not incur complications from rejection (11). However, auto-
grafting is associated with pain and morbidity at the donor
site (12). Allografts and xenografts have serious limitations
related to immunological reactions and infection (13, 14).
Tissue engineering is an interesting and practical method
for bone tissue regeneration (15). Mesenchymal stem cells
(MSC), particularly that originated from bone marrow, are
considered a suitable source for bone tissue engineering
(16). However, MSC from adipose tissue (ADMSC) is a bet-
ter choice for clinical application, because of minimally in-
vasive procedure for fat harvesting, abundance and ease
of MSC isolation and expansion in vitro (17). ADMSC is
a multipotent cell that can differentiate into adipogenic,
osteogenic, chondrogenic, myogenic, neurogenic and en-
dothelial cells (18, 19). Treatment of calvarial defects with
ADMSC transplantation has been demonstrated in the lit-
erature (20-22). Daei-farshbaf et al. reported that ADMSC
seeded on a bioceramic scaffold promoted calvarial bone
healing in hypothyroid rats (23). However, the use of stem
cells in tissue engineering for bone regeneration had some
problems such as expensive cell culture, complicated cell
handling and invasive procedure for cell collection from
patients (24). On the other hand, MSC secretes a wide
range of bioactive molecules such as growth factors and cy-
tokines that may repair and replace defective tissues and
cells (25, 26). These factors accumulate in what is known
as a conditioned medium (CM). MSC- CM improves angio-
genesis and tissue regeneration and inhibits fibrosis, apop-
tosis and inflammation (27, 28). Since survival, differentia-
tion and fate of transplanted MSC remains undetermined,
it is suggested that paracrine effects of MSC secretion are
the primary mechanism for tissue regeneration (29). Re-
cent studies have demonstrated the effect of ADMSC-CM on
tissue regeneration (17, 30, 31). Research has shown that
MSC-CM contains large amounts of cytokines that are in-
volved in bone regeneration such as insulin-like growth
factor-1 (IGF-1), vascular endothelial growth factor (VEGF)
and transforming growth factor- β1 (TGF-β1) (32). The IGF
family is responsible for tooth development and growth
and its expression is increased during osteogenic differ-
entiation (33). VEGF is a known critical factor in develop-
ment and regeneration of vascular tissue. Vascularization
is very important in the healing process of bone fracture
and it has been suggested for clinical application in non-
union bone fracture to accelerate the healing process (34).
The TGF-β family has a critical role in expression of colla-
gen as one of the most important proteins in the bone ex-
tra cellular matrix (ECM) (35, 36). Previous studies have
reported that growth factors and cytokines secreted from
MSC have high potential for bone regeneration. Osugi et
al. demonstrated that conditioned medium derived from

MSC could promote bone reconstruction by a cooperative
effect between IGF-1 and VEGF that influenced osteogene-
sis and angiogenesis (24). Inukai et al. showed a positive
effect of multiple cytokines contained in MSC-CM on alve-
olar bone and cementum regeneration (32). Also, Chang
et al. reported that paracrine factors secreted from MSC
under hypoxic condition could enhance healing of the cal-
varial defect in rats through increased endogenous stem
cell migration via regulation of ICAM-1 (intercellular ad-
hesion molecule-1) targeted microRNA-221 (37). However,
most previous in vivo studies were performed on normal
animal models and no investigation has been done to date
using ADMSC-CM for bone healing in a hypothyroid animal
model.

2. Objectives

Based on the role of CM bioactive molecules (such
as IGF, VEGF and TGF-β) in osteogenesis and healing pro-
cesses, it was hypothesized that application of ADMSC-CM
could improve bone regeneration in cases of calvarial de-
fect. Since hypothyroidism causes many problems in frac-
ture healing, the effect of ADMSC-CM was evaluated on
bone regeneration in a hypothyroid rat model. Bio-Oss
and collagen type I was used as a mechanical substrate for
CM, because one of the important items in bone grafting
surgery is filling the cavity space.

3. Methods

3.1. Adipose Tissue Mesenchymal Stem Cell Extraction and
Preparation of Conditioned Media

This experimental study was performed at Shahid Be-
heshti University of Medical Sciences, Tehran, Iran, from
2016 to 2017. Adipose tissue was harvested from testicu-
lar fat pads of healthy rats. The tissue was cut up into
small pieces and ADMSCs were extracted by enzymatic di-
gestion using collagenase type I (Sigma-Aldrich) solution,
shaken for 30 minutes at 37°C. The digested tissue was cen-
trifuged (Eppendorf 5702, Germany) and the cell pellet was
collected. The pellet was then cultured in Dulbecco’s mod-
ified Eagle’s medium (DMEM, Gibco, USA) supplemented
with 10% fetal bovine serum (Gibco) and 100 mg/mL strep-
tomycin and 100 U/mL penicillin (1% antibiotic, Gibco). At
passage 4, when the ADMSCs had reached 70% - 80% conflu-
ence, the medium was replaced by serum free DMEM and
incubated for 48 h. The conditioned media (ADMSC-CM)
was then collected and concentrated 20-fold by filtration
with 3-kD molecular cutoff filters (Amicon Ultra, Millipore,
USA).
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3.2. Characterization of Isolated ADMSC

Evaluation was made for the potential of ADMSCs to
differentiate into osteogenic and adipogenic lineages. For
osteogenic differentiation, ADMSCs were cultured under
osteogenic differentiation media containing DMEM sup-
plemented with 10 % FBS, 10-7M dexamethasone (Sigma-
Aldrich), 10 mM b-glycerophosphate (Merck), and 50
µg/mL ascorbic acid 2-phosphate (Sigma-Aldrich). After
3 weeks, alizarin red (Sigma-Aldrich) staining was per-
formed to analyze mineralization. For adipogenic differ-
entiation, cells were incubated in adipogenic medium.
This medium consisted of DMEM supplemented with 10%
FBS, 1 mM dexamethasone, 200 mM indomethacin (Sigma-
Aldrich), 500 mM isobutyl-methyl xanthine and ascorbate
2-phosphate (Sigma-Aldrich). After 21 days, adipogenesis
was evaluated by accumulation of lipid droplets in fat vac-
uoles of ADMSCs stained with oil red O (Sigma-Aldrich).

3.3. Scaffold Preparation

Collagen type I gel (obtained from rat-tail tendon) was
prepared at the concentration of 5 mg/mL. A combina-
tion of Bio-Oss particles (Geistlich Pharma, North America)
and collagen gel was used as a 3D scaffold for calvarial de-
fect. For the preparation of the scaffold with ADMSCs, 5 ×
105 third passage ADMSCs were seeded onto the scaffold.
For scaffold preparation consisted of conditioned media,
ADMSC-CM was used instead of PBS (phosphate buffered
saline, sigma-Aldrich).

3.4. Animals

All animal experiments were performed in accor-
dance with the guidelines of the ethical committee
including observance of the ethics of working with
laboratory animals of Shahid Beheshti University of
Medical Sciences and health services, Tehran, Iran
(Code.IR.SBMU.SM.REC.1394.36, Date.2015/10/3). Male
Wistar rats (5 - 6 week old; 160 - 180 g) were used in this
study. The animals (purchased from Razi Institute, Karaj,
Iran) were kept individually at a constant temperature
of 22°C with a 12-hour light/day cycle. Animals received
a standard laboratory rat food and drinking water ad
libitum. Hypothyroidism was induced by administration
of 4mg Methimazole (Tehran, Iran hormone), dissolved in
100 cc water for 60 days. Blood was collected from the cor-
ner of the eye in each rat on the 60th day. Thyroid hormone
level (TSH, T4) was measured by radioimmunoassay kit
(TSH kit, Sunlong Biotec co, Korea; T4 kit, DiaPlus inc, USA)
and absorbance was measured by ELISA reader (Sunrise,
Tecan, Switzerland). According to hormone analysis and
comparison of Methimazole treated with control healthy
rats, T4 level below 1.7 µg/dl (2.751 ± 0.18 in control and

0.94 ± 0.146 µg/dL in Methimazole treated, P < 0.001)
and TSH level above 2 µIU/mL (1.84 ± 0.029 in control and
2.644 ± 0.109 µ IU/mL in Methimazole treated, P < 0.001)
considered evidence of hypothyroid condition.

3.5. Surgical Procedure

A critical sized rat calvarial defect was created accord-
ing to the protocol reported in our previous study (38). All
rats were anesthetized with an intramuscular injection of
50 mg/kg ketamine hydrochloride (Rotex Medica, Tritteu,
Germany) with 5 mg/kg diazepam (Caspian, Rasht, Iran).
Rat scalps were shaved and then skin and periosteum were
raised to expose the calvarial bones. Circular bone de-
fects (full-thickness, 5mm in diameter) were then created
in parietal bones using a dental bur (terminal: 5 mm Diam-
eter, Medesy, Italy; Micro Motor, Strong, Korea) and were ir-
rigated constantly with saline. Dura mater was kept intact
because of its osteoinductive effect. Defects were then ran-
domly filled with implants and skin incisions were closed
with 04 nylon sutures (Supa, Iran) (Figure 1). Aseptic povi-
done iodine (Tolidaru, Tehran, Iran) was used before and af-
ter surgery. The hypothyroid rats were divided into groups
as follows, based on implanted materials: (1) empty defect;
(2) defect filled with scaffold (Bio-Oss and type I collagen
gel); (3) defect filled with scaffold /ADMSCs; (4) defect filled
with scaffold / ADMSC- CM. The rats were sacrificed at 4 or 8
weeks after transplantation and calvaries with grafts were
harvested (n = 6 per group).

3.6. Histological and Stereological Analyses

Surgical sites were dissected, fixed in 10% formalde-
hyde (Merck) and then decalcified in 14% EDTA (Sigma-
Aldrich) solution for 21 days. After the decalcification pro-
cess, explants were dehydrated by gradual exposure to al-
cohol, cleared in xylol (Merck) and embedded in paraf-
fin (Merck). For light microscopy study, each specimen
was serially cut into sections of thickness 10 µm (Leica mi-
crotome, Germany). The sections were then stained with
hematoxylin and eosin (H and E) (Merck), and then 10
sections were selected from each sample for stereological
analysis. All instruments used for ADMSC-CM preparation,
hormone analysis, surgery and histology were calibrated.

3.6.1. Volume Measurement of Bone and Connective Tissue

For stereological analysis, a light microscope con-
nected to a digital color camera (Nikon, Germany) was ap-
plied to estimate new bone volume (mm3) and connective
tissue volume (mm3), using unbiased Cavalieri method.
This method considered the product of summed section
areas and distances between sections. Stereological soft-
ware was used to determine volume of each interesting
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Figure 1. Rat Surgery and Implant Placement. After Exposing the Calvarial Bones, Critical Size (5-mm) Defect Was Created in Rat Calvaria (A). Defect Was Left Empty or Was
Filled with one of the Following Materials: Scaffold, Scaffold/ADMSCs, Scaffold/ADMSC-CM (B). The Graft Area of Calvaria at 8 Weeks After Transplantation Indicated that the
Newly Regenerated Tissue Almost Covered the Defect (C)

area in all sections and was calculated with following for-
mula (39):

Volume = t ×ΣA

where “ΣP” was the total number of points hitting the
bone tissue sections, “a/p”( ΣA = ΣP × a/p) was the area as-
sociated with each point and “t” was distance between the
sampled sections.

3.6.2. Measurement of Number of Bone Cells

Numerical density (NV) of osteocytes and osteoblasts
were estimated using an optical dissector method. Micro-
scopic images obtained from calvarial defects using 40 ×
magnification were transferred to a monitor. Then, an un-
biased counting frame was super-imposed onto a live im-
age of each section (Figure 2). Also, the optical distance
through the specmen in the Z axis was measured with mi-
crocator (Heidenhain, Germany).

Numerical density of cells was evaluated by the follow-
ing formula:

(1)Nv =

[ ∑
Q−∑

P × a/f × h
× t

BA

]
where “ΣQ-“ was the number of the nuclei coming into

focus and counted bone cells, “ΣP” was the total number
of frames counted in all fields, a/f (µm2) was the area per
frame, “h” was the height of the dissector, “t” was the real
section thickness measured using the microcator when Q-
was counted and BA was the block advance of the micro-
tome. The total number of bone cells was estimated by
multiplying numerical density (NV) by the V (total volume)
(40):

N= NV × Vtotal

Figure 2. Light Micrographs of Newly Regenerated Tissue in Graft Area After Trans-
plantation, Stained with H&E for Stereological Examination. OB, Old Bone; NB, New
Bone; CT, Connective Tissue (A). OC, Osteocyte; OB, Osteoblast; OS, Osteoclast (B)

3.7. Statistical Analysis

The Shapiro-Wilk statistics method was used to test
for normal distribution of data. Descriptive statistics
were extracted using the usual and bootstrap methods
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and expressed as Mean ± SD. Moreover, one-way analysis
of variance (ANOVA) and Kruskal-Wallis test (under non-
parametric assumption) were applied to illustrate the re-
sults. The LSD approach was used to detect any probabil-
ity of difference between the experimental groups. The re-
sults were considered statistically significant for P value
< 0.05. For comparisons of the groups in this study, the
sampling- linear-mono-gram method, introduced by Day
and Graham, was used to determine sample size (41). We
found that, in each group, the optimum sample size 6 with
type one error 0.05 and approximate power of 0.9 was de-
termined as the best. We also used the simple random sam-
pling (SRS) method for random allocation of the experi-
mental units to each group. Median and IQR were added
to statistical methods.

4. Results

4.1. Characterization of Isolated ADMSCs

Isolated stem cells from adipose tissue were character-
ized based on their morphology and differentiation poten-
tial. ADMSCs showed fibroblast-like and spindle-shaped
morphology. The multipotency of the ADMSCs was con-
firmed using osteogenic and adipogenic differentiation as-
says. Osteogenic differentiation of ADMSCs was confirmed
by red-colored calcium depositions that were positively
stained using alizarin red. Moreover, After 21 days of adi-
pogenic differentiation, lipid droplets were clearly visible
by oil red O-staining (Figure 3).

4.2. Stereological Results

Stereological analysis of new bone formation, connec-
tive tissue and bone cell numbers were performed in all ex-
perimental groups, separately, at 4 and 8 weeks after im-
plantation.

4.2.1. Volumes of New Bone and Connective Tissue

After 4 weeks, the total bone volume (mm3) and con-
nective tissue (mm3) in the defect group were significantly
lower than those in the treatment groups (LSD test, P <
0.001). The results showed significantly greater bone vol-
ume in the ADMSC-CM group compared with the scaffold
group (P = 0.003). Although the results determined that
bone volume was inferior in the ADMSC group compared
to the ADMSC-CM group, but the difference was not statisti-
cally significant (P = 0.06). Also, results of connective tissue
volume (mm3) showed no significant difference among
three groups ADMSC-CM, ADMSC and the scaffold group.

After 8 weeks, this relative difference between the
ADMSC-CM and the other treatment groups was stronger,
such that the ADMSC-CM group had significantly higher

bone volume compared with the scaffold and ADMSC
groups with evaluations of P = 0.002 and P = 0.02, respec-
tively. Moreover, the defect group exhibited a significantly
lower evaluation for bone volume in comparison to the
other groups (P < 0.001). Furthermore, evaluations for
connective tissue volume (mm3) were significantly lower
in the defect group compared to the scaffold (P = 0.002),
ADMSC (P < 0.001) and ADMSC-CM (P = 0.001) groups,
whereas there was no significant difference among three
last groups at level 0.05 (Figure 4).

4.2.2. Total Numbers of Osteocytes, Osteoblasts and Osteoclasts

After 4 weeks, the total number of osteocytes (106) and
osteoblasts (106) in the defect group showed average val-
ues significantly lower than those in the other groups (P
< 0.001). Additionally, total numbers of osteocytes and
osteoblasts in the ADMSC-CM were significantly increased
compared with those in the scaffold group (P = 0.005 and P
= 0.004, respectively). However, ANOVA showed no signifi-
cant difference in numbers of osteocytes and osteoblasts
between ADMSC-CM and ADMSC groups (P > 0.05) (Fig-
ures 5A, 6A). Moreover, results showed that total num-
ber of osteoclasts (103) in the defect group was signifi-
cantly lower than that in scaffold (P = 0.002), ADMSC (P <
0.001) and ADMSC-CM (P < 0.001) groups. Statistical analy-
sis confirmed no significant difference between treatment
groups (P > 0.05).

After 8 weeks, the results indicated significant dif-
ference in the total number of osteocytes (106) and os-
teoblasts (106) in the defect group compared with the treat-
ment groups (P < 0.001). Furthermore, total numbers for
osteocytes and osteoblasts in the ADMSC-CM group were
significantly higher compared with the scaffold group (P
= 0.01 and P = 0.008, respectively). Although it seems
that numbers of osteocytes and osteoblasts were higher in
ADMSC-CM than ADMSC group, these values were not sta-
tistically significant (P > 0.05) (Figures 5B and 6B). How-
ever, significant difference was determined between the
number of osteoclasts (103) in defect group compared to
scaffold (P = 0.002), ADMSC and ADMSC-CM groups (P <
0.001). On the other hand, no significant difference deter-
mined between ADMSC-CM with the other two treatment
groups (P > 0.05). Tables 1 and 2 show these results in more
detail. To provide more details of our data for all variables
considered in this research, Tables 3 and 4 gives their me-
dian and IQR.

5. Discussion

Extensive large calvarial defects do not heal sponta-
neously; supportive therapeutic strategies are needed to
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Figure 3. Morphology of ADMSCs Under Basal Medium (A). Morphology of ADMSCs After 21-Days Under Osteogenic Induction Medium. Calcium Deposition Can Be Seen After
Staining with Alizarin Red (B). Morphology of ADMSCs After 21-Days Under Adipogenic Induction Medium. Small Lipid Vacuoles in ADMSCs Stained Positively Using Oil Red
Solution (C). Bar 100 µm
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Figure 4. Newly Formed Bone Volume (mm3) from Stereological Analysis in Defects at 4 Weeks (A), and 8 Weeks (B) After Transplantation. According to the Graphs There Were
Significant Differences Between the Bone Volume (mm3) of the ADMSC-CM and that of the Other Groups Both at 4 and 8 Weeks Except Between the ADMSC-CM and ADMSCs
Groups at 4 Weeks. The Groups Compared by the LSD Test. *P < 0.05, **P < 0.01, ***P < 0.001

increase the chance of new bone formation (42). This prob-
lem is more severe in patients with hypothyroidism. MSC
is an appropriate candidate for bone regeneration (43). Al-
though, clinical application of MSCs have shown benefi-
cial effects in the treatment of various diseases, implanted
MSCs do not survive for long after transplantation (44).
Also, evidence has shown that allogeneic MSCs can elicit
immune response against the transplanted cells and im-
munological issues present an obstacle for tissue engineer-
ing (45). However, MSCs secrete trophic factors that can
modulate a large number of cellular responses such as
cell survival, proliferation, migration and gene expression
(28).

Based on this information, we hypothesized that
ADMSC-CM will promote healing of calvarial defect. To
confirm this hypothesis, we filled 5-mm calvarial defects
with ADMSC-CM, and Bio-Oss /collagen I as a delivery sys-
tem. Volumes of new bone and connective tissue were
analyzed by stereological methods. We used a combina-
tion of Bio-Oss and type I collagen gel as carrier for the
conditioned medium. Bio-Oss is a deproteinized bovine
bone mineral used to treat bone defects, dental implant
therapy and healing for alveolar process defects. We also
showed, in two previous studies, that Bio-Oss could sig-
nificantly increase osteogenic differentiation potential of
MSCs in vitro and bone regeneration in vivo (23, 46). Bio-
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Figure 5. Osteocytes Total Numbers (106) from Stereological Analysis in Defects at 4 Weeks (A), and 8 Weeks (B) After Transplantation. Total Numbers of Osteocytes in the
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Figure 6. Osteoblasts Total Numbers (106) from Stereological Analysis in Defects at 4 Weeks (A), and 8 Weeks (B) After Transplantation. Total numbers of Osteoblasts in the
ADMSC-CM group were Significantly Higher Compared with the Defect and Scaffold Groups Both at 4 and 8 Weeks. The Groups Compared by the LSD Test. * P<0.05, **P < 0.01,
***P < 0.001

Oss has a highly porous structure (75% - 80 % of the total
volume) that increases surface area of the scaffold (47). We
added Bio-Oss particles in to collagen type-I gel, since colla-
gen is biodegradable, biocompatible and has mechanical
properties, pore structure and permeability that provide
a suitable scaffold for tissue engineering; such that col-
lagen type I can support osteoblast, osteoclast and chon-
drocyte attachment, proliferation and differentiation (48).
The results of stereological analysis showed that ADMSC-

CM significantly increased new bone volume, connective
tissue volume and number of bone cells at 4 and 8 weeks af-
ter surgery. Interestingly, bone formation following trans-
plantation of the ADMSC/scaffold was less than ADMSC-
CM/scaffold transplantation. In agreement with our re-
sults, Osugi et al. reported a higher evaluation of new
bone regeneration in the MSC-CM group compared with
the control and the MSC transplanted groups after 4, and
8 weeks (24). In another study, Wang et al. demonstrated
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Table 1. After 4 Weeks, Mean ± SD and Their Corresponding Bootstrap Intervals of Total Bone Volume (mm3), Total Connective Tissue Volume (mm3), Total Number of Osteo-
cytes (106), Total Number of Osteoblasts (106) and Total Number of Osteoclasts (103)

Variables Groups

Defect Scaffold Scaffold/ADMSC Scaffold/ADMSC-CM

Total bone volume, mm3

Mean ± SD 0.173 ± 0.060 1.433 ± 0.266 1.803 ± 0.140 2.126 ± 0.064

Bootstrap mean ± SD 0.173 ± 0.045 1.433 ± 0.216 1.803 ± 0.126 2.126 ± 0.059

Total connective tissue volume, mm3

Mean ± SD 0.433 ± 0.095 1.996 ± 0.242 2.126 ± 0.178 2.423 ± 0.291

Bootstrap mean ± SD 0.433 ± 0.069 1.996 ± 0.220 2.126 ± 0.149 2.423 ± 0.253

Total number of osteocytes, 106

Mean ± SD 0.030 ± 0.005 2.666 ± 0.185 3.103 ± 0.294 3.416 ± 0.104

Bootstrap mean ± SD 0.030 ± 0.003 2.666 ± 0.170 3.103 ± 0.261 3.416 ± 0.095

Total number of osteoblasts, 106

Mean ± SD 0.005 ± 0.002 0.830 ± 0.104 1.126 ± 0.168 1.433 ± 0.207

Bootstrap mean ± SD 0.005 ± 0.001 0.830 ± 0.080 1.126 ± 0.090 1.433 ± 0.182

Total number of osteoclasts, 103

Mean ± SD 0.896 ± 0.896 50.843 ± 18.628 69.466 ± 13.867 80.433 ± 15.824

Bootstrap mean ± SD 0.896 ± 0.666 50.843 ± 17.274 69.466 ± 12.027 80.433 ± 13.252

Table 2. After 8 Weeks, Mean ± SD and Their Corresponding Bootstrap Intervals of Total Bone Volume (mm3), Total Connective Tissue Volume (mm3), Total Number of Osteo-
cytes (106), Total Number of Osteoblasts (106) and Total Number of Osteoclasts (103)

Variables Groups

Defect Scaffold Scaffold/ADMSC Scaffold/ADMSC-CM

Total bone volume, mm3

Mean ± SD 0.626 ± 0.104 2.536 ± 0.085 2.81 ± 0.178 3.113 ± 0.021

Bootstrap mean ± SD 0.626 ± 0.076 2.536 ± 0.078 2.81 ± 0.344 3.113 ± 0.019

Total connective tissue volume, mm3

Mean ± SD 0.82 ± 0.069 1.746 ± 0.312 2.156 ± 0.421 1.963± 0..042

Bootstrap mean ± SD 0.82 ± 0.050 1.746 ± 0.210 2.156 ± 0.346 1.963 ± 0.034

Total Number of Osteocytes, 106

Mean ± SD 0.127 ± 0.012 3.973 ± 0.099 4.296 ± 0.208 4.46 ± 0.211

Bootstrap mean ± SD 0.127 ± 0.008 3.973 ± 0.078 4.296 ± 0.173 4.46 ± 0.177

Total number of osteoblasts, 106

Mean ± SD 0.043 ± 0.010 1.706 ± 0.196 1.993 ± 0.062 2.103 ± 0.054

Bootstrap mean ± SD 0.043 ± 0.007 1.706 ± 0.100 1.993 ± 0.055 2.103 ± 0.048

Total number of osteoclasts, 103

Mean ± SD 4.58 ± 3.966 76.066 ± 27.485 94.873 ± 21.299 113.766 ± 13.136

Bootstrap mean ± SD 4.58 ± 2.930 76.066 ± 22.740 94.873 ± 19.025 113.766 ± 11.302

that MSC-CM delivered in gelatin sponge increased angio-
genesis and bone regeneration in a diabetic rat model

(49). We applied a different approach for quantitative
comparison between studied groups using three dimen-

8 Iran Red Crescent Med J. 2017; 19(5):e45516.
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Table 3. After 4 Weeks, Median and IQR of Total Bone Volume (mm3), Total Connective Tissue Volume (mm3), Total Number of Osteocytes (106), Total Number of Osteoblasts
(106) and Total Number of Osteoclasts (103)

Variables Groups

Defect Scaffold Scaffold/ADMSC Scaffold/ADMSC-CM

Total bone volume, mm3

Median 0.180 1.530 1.830 2.100

IQR 0.09 0.38 0.21 0.09

Total connective tissue volume, mm3

Median 0.450 1.950 2.120 2.280

IQR 0.14 0.36 0.27 0.40

Total number of osteocytes, 106

Median 0.031 2.650 2.980 3.475

IQR 0.01 0.28 0.41 0.16

Total number of osteoblasts, 106

Median 0.006 0.820 1.050 1.500

IQR 0.01 0.16 0.23 0.30

Total number of osteoclasts, 103

Median 0.001 51.700 72.600 85.100

IQR 2.0175 27.92 20.40 22.95

Table 4. After 8 Weeks, Median and IQR of Total Bone Volume (mm3), Total Connective Tissue Volume (mm3), Total Number of Osteocytes (106), Total Number of Osteoblasts
(106) and Total Number of Osteoclasts (103)

Variables Groups

Defect Scaffold Scaffold/ADMSC Scaffold/ADMSC-CM

Total bone volume ,mm3

Median 0.630 2.520 2.750 3.120

IQR 0.16 0.13 0.30 0.03

Total connective tissue volume ,mm3

Median 0.820 1.850 1.960 1.950

IQR 0.11 0.37 0.58 0.06

Total number of osteocytes ,106

Median 0.127 3.980 4.340 4.380

IQR 0.02 0.15 0.31 0.30

Total number of osteoblasts ,106

Median 0.040 1.730 2.030 2.100

IQR 0.02 0.29 0.08 0.08

Total number of osteoclasts ,103

Median 6.770 63.40 90.500 121.100

IQR 5.23 37.80 31.44 17.25

sional stereological analysis to determine more reliable re-
sults. Two dimensional histological section analysis may

fail to recognize small islands of newly formed bone in
areas of defect. The increased amount of new tissue and
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bone cell numbers in the ADMSC-CM group could be ex-
plained by the fact of MSCs secretions such as IGF-1, TGF-β1,
VEGF, HGF (Hepatocyte growth factor), BMP-1 (Bone mor-
phogenetic protein-1), IL-6 (Interleukin), IL-3 (32, 50) reg-
ulate osteogenesis process as well as osteoblast prolifera-
tion and differentiation (17, 51). Conditioned medium, in
addition to stem cell mobilization into the injured site,
induces stem cell differentiation into several lineages of
mesenchymal tissue (24). IGF-1 is present in bone tissue
and induces osteoblast proliferation. Furthermore, IGF-1
induces stem cell migration via the PI-3-kinase (PI3K) sig-
naling pathway (51, 52). VEGF is known as the main regu-
lator of angiogenesis and it cooperates in the osteogene-
sis process (53). Ando Y et al. demonstrated that the con-
ditioned medium of MSC improved new bone formation.
MSC-CM induced mobilization of endogenous bone mar-
row stem cells and endothelial progenitor cells through
MCP-1/-3 (Monocyte Chemoattractant Protein-1, 3) and IL-3/-
6 signaling, respectively. Therefore, they suggest that MCP-
1/-3 and IL-3/-6 could enhance bone callus formation (54).
Recently, Katagiri et al. reported that MSC-CM promoted
early bone regeneration in rabbit sinus cavities through in-
creased endogenous stem cell mobilization, proliferation
and tissue vascularization (55). In general, the results of
previous studies are consistent with results of this study
and support the hypothesis that MSC-CM promotes bone
reconstruction. In the present study, we evaluated the
ability of ADMSC and their conditioned medium to repair
critical-size calvarial defects in hypothyroid rats. Our data
showed that ADMSC-CM had high potential for osteogene-
sis. The clinical use of CM could reduce several difficulties
of stem cell application, such as problems of cost, expense,
time, safety and immunological reactions. MSC-CM can re-
cruit endogenous stem cells, without the need for stem cell
transplantation.

5.1. Weak Points and Limitations

There was a small sample size (n = 6) for each experi-
mental group.

5.2. Strong Points

We used ADMSC conditioned medium to improve bone
repair. This novel regenerative medicine provided a new
therapeutic approach for bone regeneration without ne-
cessity for stem cell implantation. This method has various
benefits for clinical application, such as simple CM storage
and transportation and low cost. Cytokines and growth
factors enhance cell proliferation and induce differentia-
tion of endogenous cells. Strength of this study was in its
findings and its methodology.

5.3. Conclusions

Our results demonstrated that ADMSC condition me-
dia enhanced bone regeneration in a hypothyroid rat
model, and the amount of new bone was greater when
paracrine factors of ADMSC were used instead of ADMSC.
These data suggest that ADMSC conditioned media in com-
bination with bioceramic- collagen can be used effectively
for bone repair in hypothyroid patients suffering from de-
creased bone-regenerating potential.
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