Difference in Relative Telomere Length Between Sudanese and Chinese Individuals

IRCMJ logo
Iranian Red Crescent Medical Journal
PDF
HTML

Keywords

Environmental factors
Ethnic groups
Genetic factors
qPCR
Relative telomere length

How to Cite

Tamomh, A., & Liu, H. (2020). Difference in Relative Telomere Length Between Sudanese and Chinese Individuals. Iranian Red Crescent Medical Journal, 22(9). https://doi.org/10.32592/ircmj.2020.22.9.37

Abstract

Background: Racial/ethnic variations in the relative telomere length have been clearly described or infrequently studied. The relative telomere length has emerged as a biological aging marker; however, the difference in the telomere length between Sudanese and Chinese individuals is unclear.

Objectives: The present study examined the difference in the relative telomere length between Sudanese and Chinese individuals.

Methods: The blood samples of Sudanese and Chinese healthy individuals were randomly collected, and their deoxyribonucleic acid was obtained in this study. The relative telomere length was measured by quantitative polymerase chain reaction. The difference in the relative telomere length was analyzed using the Mann-Whitney U test. The degree of distribution in the relative telomere length was assessed using a two-sample Kolmogorov-Smirnov Z test.

Results: According to the obtained results, the difference in the relative telomere length between Sudanese and Chinese individuals was statistically significant (P<0.05). The frequency of the relative telomere length distributed in Chinese individuals was statistically higher than that reported for the Sudanese subjects (P<0.05).

Conclusions: A great difference was observed in the relative telomere length between Sudanese and Chinese populations indicating the difference between Sudanese and Chinese races.

https://doi.org/10.32592/ircmj.2020.22.9.37
PDF
HTML

References

  1. Campa D, Matarazzi M, Greenhalf W, Bijlsma M, Saum KU, Pasquali C, et al. Genetic determinants of telomere length and risk of pancreatic cancer: A PANDoRA study. Int J Cancer. 2019;144(6):1275-83. doi: 10.1002/ijc.31928. [PMID: 30325019].
  2. Nacopoulos C, Gkouskou K, Karypidis D, Vlastos I, Vesala AM, Choukroun J, et al. Telomere length and genetic variations affecting telomere length as biomarkers for facial regeneration with platelet-rich fibrin based on the low-speed centrifugation concept. J Cosmet Dermatol. 2019;18(1):408-13. doi: 10.1111/jocd.12666. [PMID: 29761887].
  3. Wang S, Chang E, Byanyima P, Huang P, Sanyu I, Musisi E, et al. Association between common telomere length genetic variants and telomere length in an African population and impacts of HIV and TB. J Hum Genet. 2019;64(10): 1033-40. doi: 10.1038/s10038-019-0646-9. [PMID: 31388112].
  4. Belmaker A, Hallinger KK, Glynn RA, Winkler DW, Haussmann MF. The environmental and genetic determinants of chick telomere length in Tree Swallows (Tachycineta bicolor). Ecol Evol. 2019;9(14):8175-86. doi: 10.1002/ece3.5386. [PMID: 31380080].
  5. McKenna MJ, Robinson E, Taylor L, Tompkins C, Cornforth MN, Simon SL, et al. Chromosome translocations, inversions and telomere length for retrospective biodosimetry on exposed U.S. atomic veterans. Radiat Res. 2019;191(4):311-22. doi: 10.1667/rr15240.1. [PMID: 30714852].
  6. Song DY, Kim JA, Jeong D, Yun J, Kim SM, Lim K, et al. Telomere length and its correlation with gene mutations in chronic lymphocytic leukemia in a Korean population. PLoS One. 2019;14(7):e0220177. doi: 10.1371/journal.pone.0220177. [PMID: 31335885].
  7. Gillis JC, Chang SC, Wang W, Simon NM, Normand SL, Rosner BA, et al. The relation of telomere length at midlife to subsequent 20-year depression trajectories among women. Depress Anxiety. 2019;36(6): 565-75. doi: 10.1002/da.22892. [PMID: 30958913].
  8. Fan HC, Chen CM, Chi CS, Tsai JD, Chiang KL, Chang YK, et al. Targeting telomerase and ATRX/DAXX inducing tumor senescence and apoptosis in the malignant glioma. Int J Mol Sci. 2019;20(1):200. doi: 10.3390/ijms20010200. [PMID: 30625996].
  9. Tsoukalas D, Fragkiadaki P, Docea AO, Alegakis AK, Sarandi E, Vakonaki E, et al. Association of nutraceutical supplements with longer telomere length. Int J Mol Med. 2019;44(1):218-26. doi: 10.3892/ijmm.2019.4191. [PMID: 31115552].
  10. Li P, Meng Y, Wang Y, Li J, Lam M, Wang L, et al. Nuclear localization of Desmoplakin and its involvement in telomere maintenance. Int J Biol Sci. 2019;15(11):2350-62. doi: 10.7150/ijbs.34450. [PMID: 31595153].
  11. Liu P, Zhang Y, Ma L. Telomere length and associated factors in older adults with hypertension. J Int Med Res. 2019;47(11):5465-74. doi: 10.1177/0300060519882570. [PMID: 31662013].
  12. Liu J, Wang L, Wang Z, Liu JP. Roles of telomere biology in cell senescence, replicative and chronological ageing. Cells. 2019;8(1):54. doi: 10.3390/cells8010054. [PMID: 30650660].
  13. Fali T, Papagno L, Bayard C, Mouloud Y, Boddaert J, Sauce D, et al. New insights into lymphocyte differentiation and aging from telomere length and telomerase activity measurements. J Immunol. 2019;202(7):1962-9. doi: 10.4049/jimmunol.1801475. [PMID: 30737273].
  14. Okamoto K, Seimiya H. Revisiting telomere shortening in cancer. Cells. 2019;8(2):107. doi: 10.3390/cells8020107. [PMID: 30709063].
  15. Amano H, Chaudhury A, Rodriguez-Aguayo C, Lu L, Akhanov V, Catic A, et al. Telomere dysfunction induces Sirtuin repression that drives telomere-dependent disease. Cell Metab. 2019;29(6):1274-90.e9. doi: 10.1016/j.cmet.2019.03.001. [PMID: 30930169].
  16. Chen X, Zeng C, Gong C, Zhang L, Wan Y, Tao F, et al. Associations between early life parent-child separation and shortened telomere length and psychopathological outcomes during adolescence. Psychoneuroendocrinology. 2019;103:195-202. doi: 10.1016/j.psyneuen.2019.01.021. [PMID: 30711896].
  17. Whittemore K, Vera E, Martínez-Nevado E, Sanpera C, Blasco MA. Telomere shortening rate predicts species life span. Proc Natl Acad Sci U S A. 2019;116(30):15122-7. doi: 10.1073/pnas.1902452116. [PMID: 31285335].
  18. Fathi E, Charoudeh HN, Sanaat Z, Farahzadi R. Telomere shortening as a hallmark of stem cell senescence. Stem Cell Investig. 2019;6:7. doi: 10.21037/sci.2019.02.04. [PMID: 31019963].
  19. Shin D, Shin J, Lee KW. Effects of inflammation and depression on telomere length in young adults in the United States. J Clin Med. 2019;8(5):711. doi: 10.3390/jcm8050711. [PMID: 31109116].
  20. Patrick M, Weng NP. Expression and regulation of telomerase in human T cell differentiation, activation, aging and diseases. Cell Immunol. 2019;345:103989. doi: 10.1016/j.cellimm.2019.103989. [PMID: 31558266].
  21. Kesäniemi J, Lavrinienko A, Tukalenko E, Boratyński Z, Kivisaari K, Mappes T, et al. Exposure to environmental radionuclides associates with tissue-specific impacts on telomerase expression and telomere length. Sci Rep. 2019;9(1):850. doi: 10.1038/s41598-018-37164-8. [PMID: 30696885].
  22. Kim JH, Nam CM, Lee D, Bang H, Ko JH, Lim I, et al. Heritability of telomere length across three generations of Korean families. Pediatr Res. 2020;87(6):1060-5. doi: 10.1038/s41390-019-0699-7. [PMID: 31783399].
  23. Huang Y, Dai W, Li Y. Potential associations of testosterone/estradiol ratio, leukocyte hTERT expression and PBMC telomerase activity with aging and the presence of coronary artery disease in men. Exp Gerontol. 2019;117:38-44. doi: 10.1016/j.exger.2018.08.008. [PMID: 30179663].
  24. Kalungi A, Womersley JS, Kinyanda E, Joloba ML, Ssembajjwe W, Nsubuga RN, et al. Internalizing mental disorders and accelerated cellular aging among perinatally HIV-infected youth in uganda. Front Genet. 2019;10:705. doi: 10.3389/fgene.2019.00705. [PMID: 31428136].
  25. Lazarides C, Epel ES, Lin J, Blackburn EH, Voelkle MC, Buss C, et al. Maternal pro-inflammatory state during pregnancy and newborn leukocyte telomere length: a prospective investigation. Brain Behav Immun. 2019;80:419-26. doi: 10.1016/j.bbi.2019.04.021. [PMID: 30974172].
  26. Song L, Zhang B, Liu B, Wu M, Zhang L, Wang L, et al. Effects of maternal exposure to ambient air pollution on newborn telomere length. Environ Int. 2019;128:254-60. doi: 10.1016/j.envint.2019.04.064. [PMID: 31059920].
  27. Eisenberg DT, Rej PH, Duazo P, Carba D, Hayes MG, Kuzawa CW. Testing for paternal influences on offspring telomere length in a human cohort in the Philippines. Am J Phys Anthropol. 2020;171(3):520-8. doi: 10.1002/ajpa.23983. [PMID: 31845317].
  28. Koriath M, Müller C, Pfeiffer N, Nickels S, Beutel M, Schmidtmann I, et al. Relative telomere length and cardiovascular risk factors. Biomolecules. 2019;9(5):195. doi: 10.3390/biom9050192. [PMID: 31108918].
  29. Xu X, Hu H, Lin Y, Huang F, Ji H, Li Y, et al. Differences in leukocyte telomere length between coronary heart disease and normal population: a multipopulation meta-analysis. Biomed Res Int. 2019;2019:5046867. doi: 10.1155/2019/5046867. [PMID: 31198785].
  30. Pusceddu I, Herrmann W, Kleber ME, Scharnagl H, Hoffmann MM, Winklhofer-Roob BM, et al. Subclinical inflammation, telomere shortening, homocysteine, vitamin B6, and mortality: the Ludwigshafen risk and cardiovascular health Study. Eur J Nutr. 2020;59(4):1399-411. doi: 10.1007/s00394-019-01993-8. [PMID: 31129702].
  31. Cokan Vujkovac A, Novaković S, Vujkovac B, Števanec M, Škerl P, Šabovič M. Aging in Fabry disease: role of telomere length, telomerase activity, and kidney disease. Nephron. 2020;144(1):5-13. doi: 10.1159/000502909. [PMID: 31509825].
  32. Chen X, Wei S, Ma H, Jin G, Hu Z, Suping H, et al. Telomere length in cervical exfoliated cells, interaction with HPV genotype, and cervical cancer occurrence among high-risk HPV-positive women. CancerMed. 2019;8(10):4845-51. doi: 10.1002/cam4.2246. [PMID: 31243901].
  33. Srinivas N, Rachakonda S, Hielscher T, Calderazzo S, Rudnai P, Gurzau E, et al. Telomere length, arsenic exposure and risk of basal cell carcinoma of skin. Carcinogenesis. 2019;40(6):715-23. doi: 10.1093/carcin/bgz059. [PMID: 30874287].
  34. Arias-Salgado EG, Galvez E, Planas-Cerezales L, Pintado-Berninches L, Vallespin E, Martinez P, et al., Genetic analyses of aplastic anemia and idiopathic pulmonary fibrosis patients with short telomeres, possible implication of DNA-repair genes. Orphanet J Rare Dis. 2019;14(1):82. doi: 10.1186/s13023-019-1046-0. [PMID: 30995915].
  35. Shen W, Kerr CM, Przychozen B, Mahfouz RZ, LaFramboise T, Nagata Y, et al. Impact of germline CTC1 alterations on telomere length in acquired bone marrow failure. Br J Haematol. 2019;185(5):935-9. doi: 10.1111/bjh.15862. [PMID: 30891747].
  36. Demerdash HM, Elyamany AS, Arida E. Impact of direct-acting antivirals on leukocytic DNA telomere length in hepatitis C virus-related hepatic cirrhosis. Eur J Gastroenterol Hepatol. 2019;31(4):494-8. doi: 10.1097/meg.0000000000001306. [PMID: 30444746].
  37. Arish N, Petukhov D, Wallach-Dayan SB. The role of telomerase and telomeres in interstitial lung diseases: from molecules to clinical implications. Int J Mol Sci. 2019;20(12):2996. doi: 10.3390/ijms20122996. [PMID: 31248154].
  38. Borie R, Bouvry D, Cottin V, Gauvain C, Cazes A, Debray MP, et al. Regulator of telomere length 1 (RTEL1) mutations are associated with heterogeneous pulmonary and extra-pulmonary phenotypes. Eur Respir J. 2019;53(2):1800508. doi: 10.1183/13993003.00508-2018. [PMID: 30523160].
  39. Ventura A, Pellegrini C, Cardelli L, Rocco T, Ciciarelli V, Peris K, et al. Telomeres and telomerase in cutaneous squamous cell carcinoma. Int J Mol Sci. 2019;20(6):1333. doi: 10.3390/ijms20061333. [PMID: 30884806].