Iranian Red Crescent Medical Journal

Published by: Kowsar

The Protective Effects of Cultured Mesenchymal Stem Cells onto the Surface of Electrospun Poly-L-Lactide Acid Scaffolds Coated with Matricaria Chamomilla L. Oil in Streptozotocin-Induced Diabetic Rabbits

Saeid Saghahazrati 1 , Seyed Abdulmajid Ayatollahi 1 , 2 , 3 , * , Farzad Kobarfard 4 and Bagher Minaei 5
Authors Information
1 Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
2 Department of Pharmacognosy, School of Pharmacy, Shahid Beheshti University of Medical Sciences Tehran, Iran
3 Department of Chemistry, Richardson College for the Environmental Science Complex, The University of Winnipeg, Winnipeg, Canada
4 Department of Medicinal Chemistry, Shahid Beheshti School of Pharmacy, Tehran, Iran
5 Department of Histology, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
Article information
  • Iranian Red Crescent Medical Journal: 21 (2); e85247
  • Published Online: February 23, 2019
  • Article Type: Research Article
  • Received: October 12, 2018
  • Revised: February 11, 2019
  • Accepted: February 14, 2019
  • DOI: 10.5812/ircmj.85247

To Cite: Saghahazrati S , Ayatollahi S A, Kobarfard F, Minaei B. The Protective Effects of Cultured Mesenchymal Stem Cells onto the Surface of Electrospun Poly-L-Lactide Acid Scaffolds Coated with Matricaria Chamomilla L. Oil in Streptozotocin-Induced Diabetic Rabbits, Iran Red Crescent Med J. Online ahead of Print ; 21(2):e85247. doi: 10.5812/ircmj.85247.

Copyright © 2019, Author(s). This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International License ( which permits copy and redistribute the material just in noncommercial usages, provided the original work is properly cited
1. Background
2. Objectives
3. Methods
4. Results
5. Discussion
  • 1. Kasputis T, Clough D, Noto F, Rychel K, Dye B, Shea LD. Microporous polymer scaffolds for the transplantation of embryonic stem cell derived pancreatic progenitors to a clinically translatable site for the treatment of type I diabetes. ACS Biomater Sci Eng. 2018;4(5):1770-8. doi: 10.1021/acsbiomaterials.7b00912. [PubMed: 30345348]. [PubMed Central: PMC6191190].
  • 2. Kankala RK, Lin XF, Song HF, Wang SB, Yang DY, Zhang YS, et al. Supercritical fluid-assisted decoration of nanoparticles on porous microcontainers for codelivery of therapeutics and inhalation therapy of diabetes. ACS Biomater Sci Engin. 2018;4(12):4225-35. doi: 10.1021/acsbiomaterials.8b00992.
  • 3. Gotze A, von Keyserlingk S, Peschel S, Jacoby U, Schreiver C, Kohler B, et al. The corneal subbasal nerve plexus and thickness of the retinal layers in pediatric type 1 diabetes and matched controls. Sci Rep. 2018;8(1):14. doi: 10.1038/s41598-017-18284-z. [PubMed: 29311586]. [PubMed Central: PMC5758564].
  • 4. American Diabetes Association. Standards of medical care in diabetes--2014. Diabetes Care. 2013;37(Supplement_1):S14-80. doi: 10.2337/dc14-S014.
  • 5. Eizirik DL, Darville MI. Beta-cell apoptosis and defense mechanisms: Lessons from type 1 diabetes. Diabetes. 2001;50 Suppl 1:S64-9. doi: 10.2337/diabetes.50.2007.S64. [PubMed: 11272205].
  • 6. Doyle ME, Egan JM. Glucagon-like peptide-1. Recent Prog Horm Res. 2001;56:377-99. [PubMed: 11237222].
  • 7. Buteau J, El-Assaad W, Rhodes CJ, Rosenberg L, Joly E, Prentki M. Glucagon-like peptide-1 prevents beta cell glucolipotoxicity. Diabetologia. 2004;47(5):806-15. doi: 10.1007/s00125-004-1379-6. [PubMed: 15095038].
  • 8. El-Badawy A, El-Badri N. Clinical efficacy of stem cell therapy for diabetes mellitus: A meta-analysis. PLoS One. 2016;11(4). e0151938. doi: 10.1371/journal.pone.0151938. [PubMed: 27073927]. [PubMed Central: PMC4830527].
  • 9. Cunha J, Gysemans C, Gillard P, Mathieu C. Stem-cell-based therapies for improving islet transplantation outcomes in type 1 diabetes. Curr Diabetes Rev. 2018;14(1):3-13. doi: 10.2174/1573399812666160629094031. [PubMed: 27363412].
  • 10. Cho J, D'Antuono M, Glicksman M, Wang J, Jonklaas J. A review of clinical trials: Mesenchymal stem cell transplant therapy in type 1 and type 2 diabetes mellitus. Am J Stem Cells. 2018;7(4):82-93. [PubMed: 30510843]. [PubMed Central: PMC6261870].
  • 11. Amani H, Ajami M, Nasseri Maleki S, Pazoki-Toroudi H, Daglia M, Tsetegho Sokeng AJ, et al. Targeting signal transducers and activators of transcription (STAT) in human cancer by dietary polyphenolic antioxidants. Biochimie. 2017;142:63-79. doi: 10.1016/j.biochi.2017.08.007. [PubMed: 28807562].
  • 12. Pazoki-Toroudi H, Amani H, Ajami M, Nabavi SF, Braidy N, Kasi PD, et al. Targeting mTOR signaling by polyphenols: A new therapeutic target for ageing. Ageing Res Rev. 2016;31:55-66. doi: 10.1016/j.arr.2016.07.004. [PubMed: 27453478].
  • 13. Tejada S, Manayi A, Daglia M, Nabavi SF, Sureda A, Hajheydari Z, et al. Wound healing effects of curcumin: A short review. Curr Pharm Biotechnol. 2016;17(11):1002-7. [PubMed: 27640646].
  • 14. Silva FV, Dias F, Costa G, Campos MDG. Chamomile reveals to be a potent galactogogue: the unexpected effect. J Matern Fetal Neonatal Med. 2018;31(1):116-8. doi: 10.1080/14767058.2016.1274300. [PubMed: 28000519].
  • 15. Srivastava JK, Shankar E, Gupta S. Chamomile: A herbal medicine of the past with bright future. Mol Med Rep. 2010;3(6):895-901. doi: 10.3892/mmr.2010.377. [PubMed: 21132119]. [PubMed Central: PMC2995283].
  • 16. Cvetanović A, Zeković Z, Zengin G, Mašković P, Petronijević M, Radojković M. Multidirectional approaches on autofermented chamomile ligulate flowers: Antioxidant, antimicrobial, cytotoxic and enzyme inhibitory effects. South Africa J Botany. 2019;120:112-8. doi: 10.1016/j.sajb.2018.01.003.
  • 17. Rafraf M, Zemestani M, Asghari-Jafarabadi M. Effectiveness of chamomile tea on glycemic control and serum lipid profile in patients with type 2 diabetes. J Endocrinol Invest. 2015;38(2):163-70. doi: 10.1007/s40618-014-0170-x. [PubMed: 25194428].
  • 18. Zemestani M, Rafraf M, Asghari-Jafarabadi M. Chamomile tea improves glycemic indices and antioxidants status in patients with type 2 diabetes mellitus. Nutrition. 2016;32(1):66-72. doi: 10.1016/j.nut.2015.07.011. [PubMed: 26437613].
  • 19. Fazili A, Gholami S, Minaie Zangi B, Seyedjafari E, Gholami M. In vivo differentiation of mesenchymal stem cells into insulin producing cells on electrospun poly-l-lactide acid scaffolds coated with matricaria chamomilla L. oil. Cell J. 2016;18(3):310-21. [PubMed: 27602312]. [PubMed Central: PMC5011318].
  • 20. Watkins PJ, Amiel SA, Howell SL, Turner E. Diabetes and its management. John Wiley & Sons; 2008.
  • 21. Zamboni F, Collins MN. Cell based therapeutics in type 1 diabetes mellitus. Int J Pharm. 2017;521(1-2):346-56. doi: 10.1016/j.ijpharm.2017.02.063. [PubMed: 28242376].
  • 22. Javedan G, Shidfar F, Davoodi SH, Ajami M, Gorjipour F, Sureda A, et al. Conjugated linoleic acid rat pretreatment reduces renal damage in ischemia/reperfusion injury: Unraveling antiapoptotic mechanisms and regulation of phosphorylated mammalian target of rapamycin. Mol Nutr Food Res. 2016;60(12):2665-77. doi: 10.1002/mnfr.201600112. [PubMed: 27466783].
  • 23. Pazoki-Toroudi H, Nilforoushzadeh MA, Ajami M, Jaffary F, Aboutaleb N, Nassiri-Kashani M, et al. Combination of azelaic acid 5% and clindamycin 2% for the treatment of acne vulgaris. Cutan Ocul Toxicol. 2011;30(4):286-91. doi: 10.3109/15569527.2011.581257. [PubMed: 21612319].
  • 24. Pazoki-Toroudi HR, Ajami M, Habibey R. Pre-medication and renal pre-conditioning: A role for alprazolam, atropine, morphine and promethazine. Fundam Clin Pharmacol. 2010;24(2):189-98. doi: 10.1111/j.1472-8206.2009.00743.x. [PubMed: 19686533].
  • 25. Sharma G, Sharma AR, Nam JS, Doss GP, Lee SS, Chakraborty C. Nanoparticle based insulin delivery system: The next generation efficient therapy for Type 1 diabetes. J Nanobiotechnology. 2015;13:74. doi: 10.1186/s12951-015-0136-y. [PubMed: 26498972]. [PubMed Central: PMC4619439].
  • 26. Amani H, Habibey R, Hajmiresmail SJ, Latifi S, Pazoki-Toroudi H, Akhavan O. Antioxidant nanomaterials in advanced diagnoses and treatments of ischemia reperfusion injuries. J Mater Chem B. 2017;5(48):9452-76. doi: 10.1039/c7tb01689a.
  • 27. Amani H, Mostafavi E, Arzaghi H, Davaran S, Akbarzadeh A, Akhavan O, et al. Three-dimensional graphene foams: Synthesis, properties, biocompatibility, biodegradability, and applications in tissue engineering. ACS Biomater Sci Engin. 2018;5(1):193-214. doi: 10.1021/acsbiomaterials.8b00658.
  • 28. Fattah H, Vallon V. The potential role of SGLT2 inhibitors in the treatment of type 1 diabetes mellitus. Drugs. 2018;78(7):717-26. doi: 10.1007/s40265-018-0901-y. [PubMed: 29663292].
  • 29. Jafarian A, Taghikani M, Abroun S, Allahverdi A, Lamei M, Lakpour N, et al. The generation of insulin producing cells from human mesenchymal stem cells by MiR-375 and anti-MiR-9. PLoS One. 2015;10(6). e0128650. doi: 10.1371/journal.pone.0128650. [PubMed: 26047014]. [PubMed Central: PMC4457856].
  • 30. Espona-Noguera A, Ciriza J, Canibano-Hernandez A, Fernandez L, Ochoa I, Saenz Del Burgo L, et al. Tunable injectable alginate-based hydrogel for cell therapy in Type 1 diabetes mellitus. Int J Biol Macromol. 2018;107(Pt A):1261-9. doi: 10.1016/j.ijbiomac.2017.09.103. [PubMed: 28962846].
  • 31. Farooq T, Rehman K, Hameed A, Akash MSH. Stem cell therapy and type 1 diabetes mellitus: Treatment strategies and future perspectives. Adv Exp Med Biol. 2018. doi: 10.1007/5584_2018_195. [PubMed: 29896720].
  • 32. Faezi M, Nasseri Maleki S, Aboutaleb N, Nikougoftar M. The membrane mesenchymal stem cell derived conditioned medium exerts neuroprotection against focal cerebral ischemia by targeting apoptosis. J Chem Neuroanat. 2018;94:21-31. doi: 10.1016/j.jchemneu.2018.08.004. [PubMed: 30121327].
  • 33. Cemek M, Kaga S, Simsek N, Buyukokuroglu ME, Konuk M. Antihyperglycemic and antioxidative potential of Matricaria chamomilla L. in streptozotocin-induced diabetic rats. J Nat Med. 2008;62(3):284-93. doi: 10.1007/s11418-008-0228-1. [PubMed: 18404309].
  • 34. Li Y, Hansotia T, Yusta B, Ris F, Halban PA, Drucker DJ. Glucagon-like peptide-1 receptor signaling modulates beta cell apoptosis. J Biol Chem. 2003;278(1):471-8. doi: 10.1074/jbc.M209423200. [PubMed: 12409292].
  • 35. Yang J, Sun Y, Xu F, Liu W, Mai Y, Hayashi T, et al. Silibinin ameliorates amylin-induced pancreatic beta-cell apoptosis partly via upregulation of GLP-1R/PKA pathway. Mol Cell Biochem. 2019;452(1-2):83-94. doi: 10.1007/s11010-018-3414-9. [PubMed: 30022448].
  • 36. Pan W, Zhang Y, Zeng C, Xu F, Yan J, Weng J. miR-192 is upregulated in T1DM, regulates pancreatic beta-cell development and inhibits insulin secretion through suppressing GLP-1 expression. Exp Ther Med. 2018;16(3):2717-24. doi: 10.3892/etm.2018.6453. [PubMed: 30186503]. [PubMed Central: PMC6122452].
  • 37. Nie Y, Nakashima M, Brubaker PL, Li QL, Perfetti R, Jansen E, et al. Regulation of pancreatic PC1 and PC2 associated with increased glucagon-like peptide 1 in diabetic rats. J Clin Invest. 2000;105(7):955-65. doi: 10.1172/JCI7456. [PubMed: 10749575]. [PubMed Central: PMC377475].
  • 38. Srivastava JK, Gupta S. Extraction, characterization, stability and biological activity of flavonoids isolated from chamomile flowers. Mol Cell Pharmacol. 2009;1(3):138. doi: 10.4255/mcpharmacol.09.18. [PubMed: 20098626]. [PubMed Central: PMC2809371].
  • 39. Qi L, Pan H, Li D, Fang F, Chen D, Sun H. Luteolin improves contractile function and attenuates apoptosis following ischemia-reperfusion in adult rat cardiomyocytes. Eur J Pharmacol. 2011;668(1-2):201-7. doi: 10.1016/j.ejphar.2011.06.020. [PubMed: 21723277].
  • 40. Khayyal MT, Kreuter MH, Kemmler M, Altmann P, Abdel-Naby DH, El-Ghazaly MA. Effect of a chamomile extract in protecting against radiation-induced intestinal mucositis. Phytother Res. 2019. doi: 10.1002/ptr.6263. [PubMed: 30632234].

Featured Image:

Creative Commons License Except where otherwise noted, this work is licensed under Creative Commons Attribution Non Commercial 4.0 International License .

Search Relations:



Create Citiation Alert
via Google Reader

Readers' Comments