Iranian Red Crescent Medical Journal

Published by: Kowsar
Crossmark

Increased Expression of miR-1 in Fast-Twitch Skeletal Muscle in Response to Resistance Exercise

Mohammad Fathi 1 , * , Reza Gharakhanlou 2 , Masoud Soleimani 2 and Hamid Rajabi 3
Authors Information
1 Lorestan University, Khorramabad, Iran
2 Tarbiat Modares University, Tehran, Iran
3 Kharazmi University, Tehran, Iran
Article information
  • Iranian Red Crescent Medical Journal: 21 (4); e84841
  • Published Online: May 5, 2019
  • Article Type: Research Article
  • Received: October 1, 2018
  • Revised: April 21, 2019
  • Accepted: April 21, 2019
  • DOI: 10.5812/ircmj.84841

To Cite: Fathi M, Gharakhanlou R, Soleimani M, Rajabi H. Increased Expression of miR-1 in Fast-Twitch Skeletal Muscle in Response to Resistance Exercise, Iran Red Crescent Med J. Online ahead of Print ; 21(4):e84841. doi: 10.5812/ircmj.84841.

Abstract
Copyright © 2019, Author(s). This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-nc/4.0/) which permits copy and redistribute the material just in noncommercial usages, provided the original work is properly cited
1. Background
2. Objectives
3. Methods
4. Results
5. Discussion
Acknowledgements
Footnotes
References
  • 1. Farup J, Kjolhede T, Sorensen H, Dalgas U, Moller AB, Vestergaard PF, et al. Muscle morphological and strength adaptations to endurance vs. resistance training. J Strength Cond Res. 2012;26(2):398-407. doi: 10.1519/JSC.0b013e318225a26f. [PubMed: 22266546].
  • 2. Kramerova I, Ermolova N, Eskin A, Hevener A, Quehenberger O, Armando AM, et al. Failure to up-regulate transcription of genes necessary for muscle adaptation underlies limb girdle muscular dystrophy 2A (calpainopathy). Hum Mol Genet. 2016;25(11):2194-207. doi: 10.1093/hmg/ddw086. [PubMed: 27005420]. [PubMed Central: PMC5081050].
  • 3. Lee M, Wada S, Oikawa S, Suzuki K, Ushida T, Akimoto T. Loss of microRNA-23-27-24 clusters in skeletal muscle is not influential in skeletal muscle development and exercise-induced muscle adaptation. Sci Rep. 2019;9(1):1092. doi: 10.1038/s41598-018-37765-3. [PubMed: 30705375]. [PubMed Central: PMC6355808].
  • 4. Dai Y, Wang YM, Zhang WR, Liu XF, Li X, Ding XB, et al. The role of microRNA-1 and microRNA-206 in the proliferation and differentiation of bovine skeletal muscle satellite cells. In Vitro Cell Dev Biol Anim. 2016;52(1):27-34. doi: 10.1007/s11626-015-9953-4. [PubMed: 26424132].
  • 5. Siracusa J, Koulmann N, Banzet S. Circulating myomiRs: A new class of biomarkers to monitor skeletal muscle in physiology and medicine. J Cachexia Sarcopenia Muscle. 2018;9(1):20-7. doi: 10.1002/jcsm.12227. [PubMed: 29193905]. [PubMed Central: PMC5803618].
  • 6. McCarthy JJ, Esser KA. MicroRNA-1 and microRNA-133a expression are decreased during skeletal muscle hypertrophy. J Appl Physiol (1985). 2007;102(1):306-13. doi: 10.1152/japplphysiol.00932.2006. [PubMed: 17008435].
  • 7. Rao PK, Kumar RM, Farkhondeh M, Baskerville S, Lodish HF. Myogenic factors that regulate expression of muscle-specific microRNAs. Proc Natl Acad Sci U S A. 2006;103(23):8721-6. doi: 10.1073/pnas.0602831103. [PubMed: 16731620]. [PubMed Central: PMC1482645].
  • 8. Liu N, Williams AH, Kim Y, McAnally J, Bezprozvannaya S, Sutherland LB, et al. An intragenic MEF2-dependent enhancer directs muscle-specific expression of microRNAs 1 and 133. Proc Natl Acad Sci U S A. 2007;104(52):20844-9. doi: 10.1073/pnas.0710558105. [PubMed: 18093911]. [PubMed Central: PMC2409229].
  • 9. van Rooij E, Liu N, Olson EN. MicroRNAs flex their muscles. Trends Genet. 2008;24(4):159-66. doi: 10.1016/j.tig.2008.01.007. [PubMed: 18325627].
  • 10. Pilegaard H, Ordway GA, Saltin B, Neufer PD. Transcriptional regulation of gene expression in human skeletal muscle during recovery from exercise. Am J Physiol Endocrinol Metab. 2000;279(4):E806-14. doi: 10.1152/ajpendo.2000.279.4.E806. [PubMed: 11001762].
  • 11. Lee S, Farrar RP. Resistance training induces muscle-specific changes in muscle mass and function in rat. J Exerci Physiol. 2003;6(2):80-7.
  • 12. Ahmadi Khatir S, Bayatian A, Barzegari A, Roshanravan N, Safaiyan A, Pavon-Djavid G, et al. Saffron (Crocus sativus L.) supplements modulate circulating MicroRNA (miR-21) in atherosclerosis patients; a randomized, double-blind, placebo-controlled trial. Iran Red Crescent Med J. 2018;20(10). e80260. doi: 10.5812/ircmj.80260.
  • 13. Schmalbruch H, Lewis DM. Dynamics of nuclei of muscle fibers and connective tissue cells in normal and denervated rat muscles. Muscle Nerve. 2000;23(4):617-26. doi: 10.1002/(SICI)1097-4598(200004)23:4<617::AID-MUS22>3.0.CO;2-Y. [PubMed: 10716774].
  • 14. Charge SB, Rudnicki MA. Cellular and molecular regulation of muscle regeneration. Physiol Rev. 2004;84(1):209-38. doi: 10.1152/physrev.00019.2003. [PubMed: 14715915].
  • 15. Marsh DR, Criswell DS, Carson JA, Booth FW. Myogenic regulatory factors during regeneration of skeletal muscle in young, adult, and old rats. J Appl Physiol (1985). 1997;83(4):1270-5. doi: 10.1152/jappl.1997.83.4.1270. [PubMed: 9338436].
  • 16. Fielding RA, Manfredi TJ, Ding W, Fiatarone MA, Evans WJ, Cannon JG. Acute phase response in exercise. III. Neutrophil and IL-1 beta accumulation in skeletal muscle. Am J Physiol. 1993;265(1 Pt 2):R166-72. doi: 10.1152/ajpregu.1993.265.1.R166. [PubMed: 8342683].
  • 17. Bickel CS, Slade J, Mahoney E, Haddad F, Dudley GA, Adams GR. Time course of molecular responses of human skeletal muscle to acute bouts of resistance exercise. J Appl Physiol (1985). 2005;98(2):482-8. doi: 10.1152/japplphysiol.00895.2004. [PubMed: 15465884].
  • 18. McGee SL. Exercise and MEF2-HDAC interactions. Appl Physiol Nutr Metab. 2007;32(5):852-6. doi: 10.1139/H07-082. [PubMed: 18059609].
  • 19. Tamaki T, Uchiyama S, Uchiyama Y, Akatsuka A, Yoshimura S, Roy RR, et al. Limited myogenic response to a single bout of weight-lifting exercise in old rats. Am J Physiol Cell Physiol. 2000;278(6):C1143-52. doi: 10.1152/ajpcell.2000.278.6.C1143. [PubMed: 10837342].
  • 20. Molkentin JD, Olson EN. Combinatorial control of muscle development by basic helix-loop-helix and MADS-box transcription factors. Proc Natl Acad Sci U S A. 1996;93(18):9366-73. doi: 10.1073/pnas.93.18.9366. [PubMed: 8790335]. [PubMed Central: PMC38433].
  • 21. Cripps RM, Olson EN. Twist is required for muscle template splitting during adult Drosophila myogenesis. Dev Biol. 1998;203(1):106-15. doi: 10.1006/dbio.1998.9040. [PubMed: 9806776].
  • 22. Vichalkovski A, Gresko E, Hess D, Restuccia DF, Hemmings BA. PKB/AKT phosphorylation of the transcription factor Twist-1 at Ser42 inhibits p53 activity in response to DNA damage. Oncogene. 2010;29(24):3554-65. doi: 10.1038/onc.2010.115. [PubMed: 20400976].
  • 23. Hitomi Y, Kizaki T, Katsumura T, Mizuno M, Itoh CE, Esaki K, et al. Effect of moderate acute exercise on expression of mRNA involved in the calcineurin signaling pathway in human skeletal muscle. IUBMB Life. 2003;55(7):409-13. doi: 10.1080/15216540310001592825. [PubMed: 14584592].
  • 24. Putman CT, Xu X, Gillies E, MacLean IM, Bell GJ. Effects of strength, endurance and combined training on myosin heavy chain content and fibre-type distribution in humans. Eur J Appl Physiol. 2004;92(4-5):376-84. doi: 10.1007/s00421-004-1104-7. [PubMed: 15241691].
  • 25. Duncan ND, Williams DA, Lynch GS. Adaptations in rat skeletal muscle following long-term resistance exercise training. Eur J Appl Physiol Occup Physiol. 1998;77(4):372-8. doi: 10.1007/s004210050347. [PubMed: 9562367].
  • 26. Potthoff MJ, Wu H, Arnold MA, Shelton JM, Backs J, McAnally J, et al. Histone deacetylase degradation and MEF2 activation promote the formation of slow-twitch myofibers. J Clin Invest. 2007;117(9):2459-67. doi: 10.1172/JCI31960. [PubMed: 17786239]. [PubMed Central: PMC1957540].
  • 27. Liu F, Pore N, Kim M, Voong KR, Dowling M, Maity A, et al. Regulation of histone deacetylase 4 expression by the SP family of transcription factors. Mol Biol Cell. 2006;17(2):585-97. doi: 10.1091/mbc.e05-08-0775. [PubMed: 16280357]. [PubMed Central: PMC1356571].
  • 28. Connor MK, Irrcher I, Hood DA. Contractile activity-induced transcriptional activation of cytochrome C involves Sp1 and is proportional to mitochondrial ATP synthesis in C2C12 muscle cells. J Biol Chem. 2001;276(19):15898-904. doi: 10.1074/jbc.M100272200. [PubMed: 11279044].
  • 29. Freyssenet D, Irrcher I, Connor MK, Di Carlo M, Hood DA. Calcium-regulated changes in mitochondrial phenotype in skeletal muscle cells. Am J Physiol Cell Physiol. 2004;286(5):C1053-61. doi: 10.1152/ajpcell.00418.2003. [PubMed: 15075204].
  • 30. Chen JF, Callis TE, Wang DZ. microRNAs and muscle disorders. J Cell Sci. 2009;122(Pt 1):13-20. doi: 10.1242/jcs.041723. [PubMed: 19092056]. [PubMed Central: PMC2714401].
  • 31. McKinsey TA, Zhang CL, Lu J, Olson EN. Signal-dependent nuclear export of a histone deacetylase regulates muscle differentiation. Nature. 2000;408(6808):106-11. doi: 10.1038/35040593. [PubMed: 11081517]. [PubMed Central: PMC4459600].
  • 32. Hawke TJ, Garry DJ. Myogenic satellite cells: Physiology to molecular biology. J Appl Physiol (1985). 2001;91(2):534-51. doi: 10.1152/jappl.2001.91.2.534. [PubMed: 11457764].
  • 33. Schoenfeld BJ. Does exercise-induced muscle damage play a role in skeletal muscle hypertrophy? J Strength Cond Res. 2012;26(5):1441-53. doi: 10.1519/JSC.0b013e31824f207e. [PubMed: 22344059].
  • 34. Vierck J, O'Reilly B, Hossner K, Antonio J, Byrne K, Bucci L, et al. Satellite cell regulation following myotrauma caused by resistance exercise. Cell Biol Int. 2000;24(5):263-72. doi: 10.1006/cbir.2000.0499. [PubMed: 10805959].
  • 35. Farthing JP, Chilibeck PD. The effects of eccentric and concentric training at different velocities on muscle hypertrophy. Eur J Appl Physiol. 2003;89(6):578-86. doi: 10.1007/s00421-003-0842-2. [PubMed: 12756571].
  • 36. Davidsen PK, Gallagher IJ, Hartman JW, Tarnopolsky MA, Dela F, Helge JW, et al. High responders to resistance exercise training demonstrate differential regulation of skeletal muscle microRNA expression. J Appl Physiol (1985). 2011;110(2):309-17. doi: 10.1152/japplphysiol.00901.2010. [PubMed: 21030674].
  • 37. McGee SL, Hargreaves M. Histone modifications and exercise adaptations. J Appl Physiol (1985). 2011;110(1):258-63. doi: 10.1152/japplphysiol.00979.2010. [PubMed: 21030677].

Featured Image:

Creative Commons License Except where otherwise noted, this work is licensed under Creative Commons Attribution Non Commercial 4.0 International License .

Search Relations:

Author(s):

Article(s):

Create Citiation Alert
via Google Reader

Readers' Comments