Iranian Red Crescent Medical Journal

Published by: Kowsar

Cytochrome C Oxidase 6B2 Reflects the Mitochondrial Status Through the Oxidative Phosphorylation

Mahmoud Hashemitabar 1 , 2 , Elham Heidari 1 , 3 , * , Mahmoud Orazizadeh 1 , 3 , Susan Sabbagh 4 , Mahsa Afrough 2 , Maryam Dastoorpoor 5 , 6 and Ata A. Ghadiri 7
Authors Information
1 Cellular and Molecular Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
2 Infertility Research and Treatment Center of Khuzestan (ACECR), Ahvaz, Iran
3 Department of Anatomy, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
4 Faculty of Medicine, Dezful University of Medical Sciences, Dezful, Iran
5 Social Determinants of Health Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
6 Department of Epidemiology and Biostatistics, School of Public Health, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
7 Department of Immunology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
Article information
  • Iranian Red Crescent Medical Journal: December 2018, 20 (12); e81348
  • Published Online: December 2, 2018
  • Article Type: Research Article
  • Received: June 26, 2018
  • Revised: October 15, 2018
  • Accepted: October 27, 2018
  • DOI: 10.5812/ircmj.81348

To Cite: Hashemitabar M , Heidari E, Orazizadeh M , Sabbagh S, Afrough M , et al. Cytochrome C Oxidase 6B2 Reflects the Mitochondrial Status Through the Oxidative Phosphorylation, Iran Red Crescent Med J. 2018 ; 20(12):e81348. doi: 10.5812/ircmj.81348.

Abstract
Copyright © 2018, Author(s). This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-nc/4.0/) which permits copy and redistribute the material just in noncommercial usages, provided the original work is properly cited
1. Background
2. Objectives
3. Methods
4. Results
5. Discussion
Footnotes
References
  • 1. Curi SM, Ariagno JI, Chenlo PH, Mendeluk GR, Pugliese MN, Sardi Segovia LM, et al. Asthenozoospermia: Analysis of a large population. Arch Androl. 2003;49(5):343-9. doi: 10.1080/01485010390219656. [PubMed: 12893510].
  • 2. Martinez-Heredia J, Estanyol JM, Ballesca JL, Oliva R. Proteomic identification of human sperm proteins. Proteomics. 2006;6(15):4356-69. doi: 10.1002/pmic.200600094. [PubMed: 16819732].
  • 3. du Plessis SS, Agarwal A, Mohanty G, van der Linde M. Oxidative phosphorylation versus glycolysis: What fuel do spermatozoa use? Asian J Androl. 2015;17(2):230-5. doi: 10.4103/1008-682X.135123. [PubMed: 25475660]. [PubMed Central: PMC4650467].
  • 4. Sinkler CA, Kalpage H, Shay J, Lee I, Malek MH, Grossman LI, et al. Tissue- and condition-specific isoforms of mammalian cytochrome c oxidase subunits: From function to human disease. Oxid Med Cell Longev. 2017;2017:1534056. doi: 10.1155/2017/1534056. [PubMed: 28593021]. [PubMed Central: PMC5448071].
  • 5. Huttemann M, Jaradat S, Grossman LI. Cytochrome c oxidase of mammals contains a testes-specific isoform of subunit VIb--the counterpart to testes-specific cytochrome c? Mol Reprod Dev. 2003;66(1):8-16. doi: 10.1002/mrd.10327. [PubMed: 12874793].
  • 6. Weishaupt A, Kadenbach B. Selective removal of subunit VIb increases the activity of cytochrome c oxidase. Biochemistry. 1992;31(46):11477-81. doi: 10.1021/bi00161a028. [PubMed: 1332762].
  • 7. Holt WV. Is quality assurance in semen analysis still really necessary? A spermatologist's viewpoint. Hum Reprod. 2005;20(11):2983-6. doi: 10.1093/humrep/dei189. [PubMed: 16006459].
  • 8. Holt WV, Van Look KJW. Concepts in sperm heterogeneity, sperm selection and sperm competition as biological foundations for laboratory tests of semen quality. Reproduction. 2004;127(5):527-35. doi: 10.1530/rep.1.00134. [PubMed: 15129008].
  • 9. Chazotte B. Labeling mitochondria with MitoTracker dyes. Cold Spring Harb Protoc. 2011;2011(8):990-2. doi: 10.1101/pdb.prot5648. [PubMed: 21807856].
  • 10. Sousa AP, Amaral A, Baptista M, Tavares R, Caballero Campo P, Caballero Peregrin P, et al. Not all sperm are equal: Functional mitochondria characterize a subpopulation of human sperm with better fertilization potential. PLoS One. 2011;6(3). e18112. doi: 10.1371/journal.pone.0018112. [PubMed: 21448461]. [PubMed Central: PMC3063179].
  • 11. Martikainen MH, Grady JP, Ng YS, Alston CL, Gorman GS, Taylor RW, et al. Decreased male reproductive success in association with mitochondrial dysfunction. Eur J Hum Genet. 2017;25(10):1162-4. doi: 10.1038/ejhg.2017.114. [PubMed: 28812649]. [PubMed Central: PMC5600812].
  • 12. Nesbitt V, Alston CL, Blakely EL, Fratter C, Feeney CL, Poulton J, et al. A national perspective on prenatal testing for mitochondrial disease. Eur J Hum Genet. 2014;22(11):1255-9. doi: 10.1038/ejhg.2014.35. [PubMed: 24642831]. [PubMed Central: PMC4200441].
  • 13. Uribe P, Villegas JV, Boguen R, Treulen F, Sanchez R, Mallmann P, et al. Use of the fluorescent dye tetramethylrhodamine methyl ester perchlorate for mitochondrial membrane potential assessment in human spermatozoa. Andrologia. 2017;49(9). doi: 10.1111/and.12753. [PubMed: 28078721].
  • 14. Chazotte B. Labeling mitochondria with JC-1. Cold Spring Harb Protoc. 2011;2011(9). doi: 10.1101/pdb.prot065490. [PubMed: 21880824].
  • 15. Guthrie HD, Welch GR. Determination of high mitochondrial membrane potential in spermatozoa loaded with the mitochondrial probe 5,5',6,6'-tetrachloro-1,1',3,3'-tetraethylbenzimidazolyl-carbocyanine iodide (JC-1) by using fluorescence-activated flow cytometry. Methods Mol Biol. 2008;477:89-97. doi: 10.1007/978-1-60327-517-0_8. [PubMed: 19082941].
  • 16. Hashemitabar M, Sabbagh S, Orazizadeh M, Ghadiri A, Bahmanzadeh M. A proteomic analysis on human sperm tail: Comparison between normozoospermia and asthenozoospermia. J Assist Reprod Genet. 2015;32(6):853-63. doi: 10.1007/s10815-015-0465-7. [PubMed: 25825237]. [PubMed Central: PMC4491089].
  • 17. World Health Organization. Examination and processing of human semen. 10. Fifth ed. World Health Organization; 2010.
  • 18. Amaral A, Paiva C, Attardo Parrinello C, Estanyol JM, Ballesca JL, Ramalho-Santos J, et al. Identification of proteins involved in human sperm motility using high-throughput differential proteomics. J Proteome Res. 2014;13(12):5670-84. doi: 10.1021/pr500652y. [PubMed: 25250979].
  • 19. Chao HC, Chung CL, Pan HA, Liao PC, Kuo PL, Hsu CC. Protein tyrosine phosphatase non-receptor type 14 is a novel sperm-motility biomarker. J Assist Reprod Genet. 2011;28(9):851-61. doi: 10.1007/s10815-011-9602-0. [PubMed: 21701840]. [PubMed Central: PMC3169687].
  • 20. Eley A, Hosseinzadeh S, Hakimi H, Geary I, Pacey AA. Apoptosis of ejaculated human sperm is induced by co-incubation with Chlamydia trachomatis lipopolysaccharide. Hum Reprod. 2005;20(9):2601-7. doi: 10.1093/humrep/dei082. [PubMed: 15905291].
  • 21. Turner RM. Moving to the beat: A review of mammalian sperm motility regulation. Reprod Fertil Dev. 2006;18(1-2):25-38. doi: 10.1071/RD05120. [PubMed: 16478600].
  • 22. Inaba K. Sperm flagella: Comparative and phylogenetic perspectives of protein components. Mol Hum Reprod. 2011;17(8):524-38. doi: 10.1093/molehr/gar034. [PubMed: 21586547].
  • 23. Ruiz-Pesini E, Diez C, Lapena AC, Perez-Martos A, Montoya J, Alvarez E, et al. Correlation of sperm motility with mitochondrial enzymatic activities. Clin Chem. 1998;44(8 Pt 1):1616-20. [PubMed: 9702947].
  • 24. Wang X, Sharma RK, Gupta A, George V, Thomas AJ, Falcone T, et al. Alterations in mitochondria membrane potential and oxidative stress in infertile men: A prospective observational study. Fertil Steril. 2003;80 Suppl 2:844-50. doi: 10.1016/S0015-0282(03)00983-X. [PubMed: 14505763].
  • 25. Bonanno O, Romeo G, Asero P, Pezzino FM, Castiglione R, Burrello N, et al. Sperm of patients with severe asthenozoospermia show biochemical, molecular and genomic alterations. Reproduction. 2016;152(6):695-704. doi: 10.1530/REP-16-0342. [PubMed: 27651518].
  • 26. Lobascio AM, De Felici M, Anibaldi M, Greco P, Minasi MG, Greco E. Involvement of seminal leukocytes, reactive oxygen species, and sperm mitochondrial membrane potential in the DNA damage of the human spermatozoa. Andrology. 2015;3(2):265-70. doi: 10.1111/andr.302. [PubMed: 25598385].
  • 27. Martinez-Heredia J, de Mateo S, Vidal-Taboada JM, Ballesca JL, Oliva R. Identification of proteomic differences in asthenozoospermic sperm samples. Hum Reprod. 2008;23(4):783-91. doi: 10.1093/humrep/den024. [PubMed: 18281682].
  • 28. Ramalho-Santos J, Varum S, Amaral S, Mota PC, Sousa AP, Amaral A. Mitochondrial functionality in reproduction: From gonads and gametes to embryos and embryonic stem cells. Hum Reprod Update. 2009;15(5):553-72. doi: 10.1093/humupd/dmp016. [PubMed: 19414527].
  • 29. Amaral A, Castillo J, Ramalho-Santos J, Oliva R. The combined human sperm proteome: Cellular pathways and implications for basic and clinical science. Hum Reprod Update. 2014;20(1):40-62. doi: 10.1093/humupd/dmt046. [PubMed: 24082039].
  • 30. Peterson RN, Freund M. Citrate formation from exogenous substrates by washed human spermatozoa. J Reprod Fertil. 1974;38(1):73-9. doi: 10.1530/jrf.0.0380073. [PubMed: 4841383].
  • 31. Schiffer TA, Friederich-Persson M. Mitochondrial reactive oxygen species and kidney hypoxia in the development of diabetic nephropathy. Front Physiol. 2017;8:211. doi: 10.3389/fphys.2017.00211. [PubMed: 28443030]. [PubMed Central: PMC5386984].
  • 32. Doll DN, Rellick SL, Barr TL, Ren X, Simpkins JW. Rapid mitochondrial dysfunction mediates TNF-alpha-induced neurotoxicity. J Neurochem. 2015;132(4):443-51. doi: 10.1111/jnc.13008. [PubMed: 25492727]. [PubMed Central: PMC4459129].
  • 33. Lyakhovich A, Graifer D, Stefanovie B, Krejci L. Mitochondrial dysfunction in DDR-related cancer predisposition syndromes. Biochim Biophys Acta. 2016;1865(2):184-9. doi: 10.1016/j.bbcan.2016.02.006. [PubMed: 26926806].
  • 34. Massa V, Fernandez-Vizarra E, Alshahwan S, Bakhsh E, Goffrini P, Ferrero I, et al. Severe infantile encephalomyopathy caused by a mutation in COX6B1, a nucleus-encoded subunit of cytochrome c oxidase. Am J Hum Genet. 2008;82(6):1281-9. doi: 10.1016/j.ajhg.2008.05.002. [PubMed: 18499082]. [PubMed Central: PMC2427282].
  • 35. Abdulhag UN, Soiferman D, Schueler-Furman O, Miller C, Shaag A, Elpeleg O, et al. Mitochondrial complex IV deficiency, caused by mutated COX6B1, is associated with encephalomyopathy, hydrocephalus and cardiomyopathy. Eur J Hum Genet. 2015;23(2):159-64. doi: 10.1038/ejhg.2014.85. [PubMed: 24781756]. [PubMed Central: PMC4297913].
  • 36. LaMarche AE, Abate MI, Chan SH, Trumpower BL. Isolation and characterization of COX12, the nuclear gene for a previously unrecognized subunit of Saccharomyces cerevisiae cytochrome c oxidase. J Biol Chem. 1992;267(31):22473-80. [PubMed: 1331057].
  • 37. Ghosh A, Pratt AT, Soma S, Theriault SG, Griffin AT, Trivedi PP, et al. Mitochondrial disease genes COA6, COX6B and SCO2 have overlapping roles in COX2 biogenesis. Hum Mol Genet. 2016;25(4):660-71. doi: 10.1093/hmg/ddv503. [PubMed: 26669719]. [PubMed Central: PMC4743686].
  • 38. Alvarez-Paggi D, Zitare U, Murgida DH. The role of protein dynamics and thermal fluctuations in regulating cytochrome c/cytochrome c oxidase electron transfer. Biochim Biophys Acta. 2014;1837(7):1196-207. doi: 10.1016/j.bbabio.2014.01.019. [PubMed: 24502917].
  • 39. Jodar M, Kalko S, Castillo J, Ballesca JL, Oliva R. Differential RNAs in the sperm cells of asthenozoospermic patients. Hum Reprod. 2012;27(5):1431-8. doi: 10.1093/humrep/des021. [PubMed: 22353264].
  • 40. Erkkila K, Kyttanen S, Wikstrom M, Taari K, Hikim AP, Swerdloff RS, et al. Regulation of human male germ cell death by modulators of ATP production. Am J Physiol Endocrinol Metab. 2006;290(6):E1145-54. doi: 10.1152/ajpendo.00142.2005. [PubMed: 16403780].
Creative Commons License Except where otherwise noted, this work is licensed under Creative Commons Attribution Non Commercial 4.0 International License .

Search Relations:

Author(s):

Article(s):

Create Citiation Alert
via Google Reader

Readers' Comments