Iranian Red Crescent Medical Journal

Published by: Kowsar

Saffron (Crocus sativus L.) Supplements Modulate Circulating MicroRNA (miR-21) in Atherosclerosis Patients; A Randomized, Double-Blind, Placebo-Controlled Trial

Shonaz Ahmadi Khatir 1 , Ayatollah Bayatian 2 , Abolfazl Barzegari 3 , Neda Roshanravan 4 , Abdolrasoul Safaiyan 5 , Graciela Pavon-Djavid 6 and Alireza Ostadrahimi 1 , *
Authors Information
1 Nutrition Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
2 Naja Research Center, Tehran, Iran
3 Research Center for Pharmaceutical Nanotechnology, Tabriz University of Medical Sciences, Tabriz, Iran
4 Cardiovascular Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
5 Department of Biostatistics and Epidemiology, Road Traffic Center, Tabriz University of Medical Sciences, Tabriz, Iran
6 INSERM U1148, Laboratory for Vascular Translational Science, Paris 13 University, Paris, France
Article information
  • Iranian Red Crescent Medical Journal: October 2018, 20 (10); e80260
  • Published Online: October 17, 2018
  • Article Type: Research Article
  • Received: June 8, 2018
  • Revised: August 24, 2018
  • Accepted: August 26, 2018
  • DOI: 10.5812/ircmj.80260

To Cite: Ahmadi Khatir S, Bayatian A , Barzegari A, Roshanravan N, Safaiyan A , et al. Saffron (Crocus sativus L.) Supplements Modulate Circulating MicroRNA (miR-21) in Atherosclerosis Patients; A Randomized, Double-Blind, Placebo-Controlled Trial, Iran Red Crescent Med J. 2018 ; 20(10):e80260. doi: 10.5812/ircmj.80260.

Abstract
Copyright © 2018, Author(s). This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-nc/4.0/) which permits copy and redistribute the material just in noncommercial usages, provided the original work is properly cited
1. Background
2. Objectives
3. Methods
4. Results
5. Discussion
Acknowledgements
Footnotes
References
  • 1. Barja G. Updating the mitochondrial free radical theory of aging: An integrated view, key aspects, and confounding concepts. Antioxid Redox Signal. 2013;19(12):1420-45. doi: 10.1089/ars.2012.5148. [PubMed: 23642158]. [PubMed Central: PMC3791058].
  • 2. Torres N, Guevara-Cruz M, Velazquez-Villegas LA, Tovar AR. Nutrition and atherosclerosis. Arch Med Res. 2015;46(5):408-26. doi: 10.1016/j.arcmed.2015.05.010. [PubMed: 26031780].
  • 3. Kannel WB, Castelli WP, Gordon T. Cholesterol in the prediction of atherosclerotic disease. New perspectives based on the Framingham study. Ann Intern Med. 1979;90(1):85-91. doi: 10.7326/0003-4819-90-1-85. [PubMed: 217290].
  • 4. McGill HC, Jr, McMahan CA, Herderick EE, Zieske AW, Malcom GT, Tracy RE, et al. Obesity accelerates the progression of coronary atherosclerosis in young men. Circulation. 2002;105(23):2712-8. doi: 10.1161/01.CIR.0000018121.67607.CE. [PubMed: 12057983].
  • 5. Libby P, Ridker PM, Maseri A. Inflammation and atherosclerosis. Circulation. 2002;105(9):1135-43. doi: 10.1161/hc0902.104353. [PubMed: 11877368].
  • 6. Hedin U, Hansson GK. Atherosclerosis—disease mechanisms and clinical consequences. In: Thompson M, editor. Oxford Textbook of Vascular Surgery. Oxford University Press; 2016. 3 p.
  • 7. Alissa EM, Ferns GA. Dietary fruits and vegetables and cardiovascular diseases risk. Crit Rev Food Sci Nutr. 2017;57(9):1950-62. doi: 10.1080/10408398.2015.1040487. [PubMed: 26192884].
  • 8. Bekkering S, Joosten LA, van der Meer JW, Netea MG, Riksen NP. The epigenetic memory of monocytes and macrophages as a novel drug target in atherosclerosis. Clin Ther. 2015;37(4):914-23. doi: 10.1016/j.clinthera.2015.01.008. [PubMed: 25704108].
  • 9. Rafieian-Kopaei M, Setorki M, Doudi M, Baradaran A, Nasri H. Atherosclerosis: Process, indicators, risk factors and new hopes. Int J Prev Med. 2014;5(8):927-46. [PubMed: 25489440]. [PubMed Central: PMC4258672].
  • 10. Gong F, Liu Z, Liu J, Zhou P, Liu Y, Lu X. The paradoxical role of IL-17 in atherosclerosis. Cell Immunol. 2015;297(1):33-9. doi: 10.1016/j.cellimm.2015.05.007. [PubMed: 26077826].
  • 11. Wang S, Zhang X, Liu M, Luan H, Ji Y, Guo P, et al. Chrysin inhibits foam cell formation through promoting cholesterol efflux from RAW264.7 macrophages. Pharm Biol. 2015;53(10):1481-7. doi: 10.3109/13880209.2014.986688. [PubMed: 25857322].
  • 12. Yuan M, Fu H, Ren L, Wang H, Guo W. Soluble CD40 ligand promotes macrophage foam cell formation in the etiology of atherosclerosis. Cardiology. 2015;131(1):1-12. doi: 10.1159/000374105. [PubMed: 25825037].
  • 13. Fang L, Moore XL, Dart AM, Wang LM. Systemic inflammatory response following acute myocardial infarction. J Geriatr Cardiol. 2015;12(3):305-12. doi: 10.11909/j.issn.1671-5411.2015.03.020. [PubMed: 26089856]. [PubMed Central: PMC4460175].
  • 14. Salvayre R, Negre-Salvayre A, Camare C. Oxidative theory of atherosclerosis and antioxidants. Biochimie. 2016;125:281-96. doi: 10.1016/j.biochi.2015.12.014. [PubMed: 26717905].
  • 15. Dorighello GG, Paim BA, Leite ACR, Vercesi AE, Oliveira HCF. Spontaneous experimental atherosclerosis in hypercholesterolemic mice advances with ageing and correlates with mitochondrial reactive oxygen species. Exp Gerontol. 2018;109:47-50. doi: 10.1016/j.exger.2017.02.010. [PubMed: 28213051].
  • 16. Griffiths K, Aggarwal BB, Singh RB, Buttar HS, Wilson D, De Meester F. Food antioxidants and their anti-inflammatory properties: A potential role in cardiovascular diseases and cancer prevention. Diseases. 2016;4(3). doi: 10.3390/diseases4030028. [PubMed: 28933408]. [PubMed Central: PMC5456284].
  • 17. Kussmann M, Stover P. Nutrigenomics and proteomics in health and disease: Towards a systems-level understanding of gene-diet interactions. 2nd ed. Oxford: John Wiley & Sons; 2017.
  • 18. Barzegari A, Pavon-Djavid G. Carotenoids as signaling molecules in cardiovascular biology. Bioimpacts. 2014;4(3):111-2. doi: 10.15171/bi.2014.002. [PubMed: 25337462]. [PubMed Central: PMC4204034].
  • 19. Rahaiee S, Moini S, Hashemi M, Shojaosadati SA. Evaluation of antioxidant activities of bioactive compounds and various extracts obtained from saffron (Crocus sativus L.): A review. J Food Sci Technol. 2015;52(4):1881-8. doi: 10.1007/s13197-013-1238-x. [PubMed: 25829569]. [PubMed Central: PMC4375186].
  • 20. Milajerdi A, Mahmoudi M. [Review on the effects of saffron extract and its constituents on factors related to nervous system, cardiovascular and gastrointestinal diseases]. J Clin Excellence. 2014;3(1):108-27. Persian.
  • 21. Sheedy FJ. Turning 21: Induction of miR-21 as a key switch in the inflammatory response. Front Immunol. 2015;6:19. doi: 10.3389/fimmu.2015.00019. [PubMed: 25688245]. [PubMed Central: PMC4310327].
  • 22. Xu X, Kriegel AJ, Jiao X, Liu H, Bai X, Olson J, et al. miR-21 in ischemia/reperfusion injury: A double-edged sword? Physiol Genomics. 2014;46(21):789-97. doi: 10.1152/physiolgenomics.00020.2014. [PubMed: 25159851]. [PubMed Central: PMC4280148].
  • 23. Kumar S, Kim CW, Simmons RD, Jo H. Role of flow-sensitive microRNAs in endothelial dysfunction and atherosclerosis: Mechanosensitive athero-miRs. Arterioscler Thromb Vasc Biol. 2014;34(10):2206-16. doi: 10.1161/ATVBAHA.114.303425. [PubMed: 25012134]. [PubMed Central: PMC4169332].
  • 24. Rodriguez-Ruiz V, Barzegari A, Zuluaga M, Zunooni-Vahed S, Rahbar-Saadat Y, Letourneur D, et al. Potential of aqueous extract of saffron ( Crocus sativus L.) in blocking the oxidative stress by modulation of signal transduction in human vascular endothelial cells. J Function Food. 2016;26:123-34. doi: 10.1016/j.jff.2016.07.003.
  • 25. Olivieri F, Spazzafumo L, Santini G, Lazzarini R, Albertini MC, Rippo MR, et al. Age-related differences in the expression of circulating microRNAs: miR-21 as a new circulating marker of inflammaging. Mech Ageing Dev. 2012;133(11-12):675-85. doi: 10.1016/j.mad.2012.09.004. [PubMed: 23041385].
  • 26. Fadai F, Mousavi B, Ashtari Z, Ali beigi N, Farhang S, Hashempour S, et al. Saffron aqueous extract prevents metabolic syndrome in patients with schizophrenia on olanzapine treatment: A randomized triple blind placebo controlled study. Pharmacopsychiatry. 2014;47(4-5):156-61. doi: 10.1055/s-0034-1382001. [PubMed: 24955550].
  • 27. Schmidt M, Betti G, Hensel A. Saffron in phytotherapy: Pharmacology and clinical uses. Wien Med Wochenschr. 2007;157(13-14):315-9. doi: 10.1007/s10354-007-0428-4. [PubMed: 17704979].
  • 28. Verma SK, Bordia A. Antioxidant property of Saffron in man. Indian J Med Sci. 1998;52(5):205-7. [PubMed: 9808914].
  • 29. Bourges C. Use of saffron and/or safranal and/or crocin and/or picrocrocin and/or derivatives thereof as a sateity agent for treatment of obesity. Google Patents. 2017.
  • 30. Milajerdi A, Jazayeri S, Hashemzadeh N, Shirzadi E, Derakhshan Z, Djazayeri A, et al. The effect of saffron (Crocus sativus L.) hydroalcoholic extract on metabolic control in type 2 diabetes mellitus: A triple-blinded randomized clinical trial. J Res Med Sci. 2018;23:16. doi: 10.4103/jrms.JRMS_286_17. [PubMed: 29531568]. [PubMed Central: PMC5842443].
  • 31. Azimi P, Ghiasvand R, Feizi A, Hariri M, Abbasi B. Effects of cinnamon, cardamom, saffron, and ginger consumption on markers of glycemic control, lipid profile, oxidative stress, and inflammation in type 2 diabetes patients. Rev Diabet Stud. 2014;11(3-4):258-66. doi: 10.1900/RDS.2014.11.258. [PubMed: 26177486]. [PubMed Central: PMC5397291].
  • 32. Fan X, Wang E, Wang X, Cong X, Chen X. MicroRNA-21 is a unique signature associated with coronary plaque instability in humans by regulating matrix metalloproteinase-9 via reversion-inducing cysteine-rich protein with Kazal motifs. Exp Mol Pathol. 2014;96(2):242-9. doi: 10.1016/j.yexmp.2014.02.009. [PubMed: 24594117].
  • 33. Jiang Y, Wang HY, Li Y, Guo SH, Zhang L, Cai JH. Peripheral blood miRNAs as a biomarker for chronic cardiovascular diseases. Sci Rep. 2014;4:5026. doi: 10.1038/srep05026. [PubMed: 24848278]. [PubMed Central: PMC4052773].
  • 34. Jin H, Li DY, Chernogubova E, Sun C, Busch A, Eken SM, et al. Local delivery of miR-21 stabilizes fibrous caps in vulnerable atherosclerotic lesions. Mol Ther. 2018;26(4):1040-55. doi: 10.1016/j.ymthe.2018.01.011. [PubMed: 29503197]. [PubMed Central: PMC6080193].
  • 35. Barwari T, Rienks M, Mayr M. MicroRNA-21 and the Vulnerability of Atherosclerotic Plaques. Mol Ther. 2018;26(4):938-40. doi: 10.1016/j.ymthe.2018.03.005. [PubMed: 29571964]. [PubMed Central: PMC6080134].
  • 36. Schober A, Nazari-Jahantigh M, Weber C. MicroRNA-mediated mechanisms of the cellular stress response in atherosclerosis. Nat Rev Cardiol. 2015;12(6):361-74. doi: 10.1038/nrcardio.2015.38. [PubMed: 25855604].
  • 37. Davis CD, Ross SA. Evidence for dietary regulation of microRNA expression in cancer cells. Nutr Rev. 2008;66(8):477-82. doi: 10.1111/j.1753-4887.2008.00080.x. [PubMed: 18667010].
  • 38. Hosseinzadeh H, Abootorabi A, Sadeghnia HR. Protective effect of Crocus sativus stigma extract and crocin (trans-crocin 4) on methyl methanesulfonate-induced DNA damage in mice organs. DNA Cell Biol. 2008;27(12):657-64. doi: 10.1089/dna.2008.0767. [PubMed: 18788978].
  • 39. Premkumar K, Abraham SK, Santhiya ST, Gopinath PM, Ramesh A. Inhibition of genotoxicity by saffron (Crocus sativus L.) in mice. Drug Chem Toxicol. 2001;24(4):421-8. doi: 10.1081/DCT-100106266. [PubMed: 11665650].
  • 40. Premkumar K, Thirunavukkarasu C, Abraham SK, Santhiya ST, Ramesh A. Protective effect of saffron (Crocus sativus L.) aqueous extract against genetic damage induced by anti-tumor agents in mice. Hum Exp Toxicol. 2006;25(2):79-84. doi: 10.1191/0960327106ht589oa. [PubMed: 16539212].
  • 41. Naghshineh A, Dadras A, Ghalandari B, Riazi GH, Modaresi SM, Afrasiabi A, et al. Safranal as a novel anti-tubulin binding agent with potential use in cancer therapy: An in vitro study. Chem Biol Interact. 2015;238:151-60. doi: 10.1016/j.cbi.2015.06.023. [PubMed: 26102007].
  • 42. Mehdizadeh R, Parizadeh MR, Khooei AR, Mehri S, Hosseinzadeh H. Cardioprotective effect of saffron extract and safranal in isoproterenol-induced myocardial infarction in wistar rats. Iran J Basic Med Sci. 2013;16(1):56-63. [PubMed: 23638293]. [PubMed Central: PMC3637905].
  • 43. Guleria P, Goswami D, Yadav K. Computational identification of miRNAs and their targets from Crocus sativus L. Arch Biolog Sci. 2012;64(1):65-70. doi: 10.2298/abs1201065g.
  • 44. Economou EK, Oikonomou E, Siasos G, Papageorgiou N, Tsalamandris S, Mourouzis K, et al. The role of microRNAs in coronary artery disease: From pathophysiology to diagnosis and treatment. Atherosclerosis. 2015;241(2):624-33. doi: 10.1016/j.atherosclerosis.2015.06.037. [PubMed: 26117399].
  • 45. Gao Y, Peng J, Ren Z, He NY, Li Q, Zhao XS, et al. Functional regulatory roles of microRNAs in atherosclerosis. Clin Chim Acta. 2016;460:164-71. doi: 10.1016/j.cca.2016.06.044. [PubMed: 27384386].
  • 46. Canfran-Duque A, Rotllan N, Zhang X, Fernandez-Fuertes M, Ramirez-Hidalgo C, Araldi E, et al. Macrophage deficiency of miR-21 promotes apoptosis, plaque necrosis, and vascular inflammation during atherogenesis. EMBO Mol Med. 2017;9(9):1244-62. doi: 10.15252/emmm.201607492. [PubMed: 28674080]. [PubMed Central: PMC5582411].
Creative Commons License Except where otherwise noted, this work is licensed under Creative Commons Attribution Non Commercial 4.0 International License .

Search Relations:

Author(s):

Article(s):

Create Citiation Alert
via Google Reader

Readers' Comments