Iranian Red Crescent Medical Journal

Published by: Kowsar

Cross-Sectional Study of Gene Expression Analysis Identifies Critical Biological Pathways and Key Genes Implicated in Non-Small Cell Lung Cancer

Tonglian Wang 1 , Jing Hu 2 , Lutong Xu 1 , Hongbo Zhao 3 , Yuanyue Li 1 , Tao Shou 2 , Xueshan Xia 1 and Qiang Chen 1 , *
Authors Information
1 Research Center of Molecular Medicine of Yunnan Province, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, P.R. China
2 Medical Oncology, The First People’s Hospital of Yunnan Province, Kunming, P.R. China
3 Institute of Molecular and Clinical Medicine, Kunming Medical University, Kunming, P.R. China
Article information
  • Iranian Red Crescent Medical Journal: March 2018, 20 (3); e65035
  • Published Online: March 31, 2018
  • Article Type: Research Article
  • Received: December 18, 2017
  • Revised: February 4, 2018
  • Accepted: February 24, 2018
  • DOI: 10.5812/ircmj.65035

To Cite: Wang T, Hu J, Xu L, Zhao H, Li Y, et al. Cross-Sectional Study of Gene Expression Analysis Identifies Critical Biological Pathways and Key Genes Implicated in Non-Small Cell Lung Cancer, Iran Red Crescent Med J. 2018 ; 20(3):e65035. doi: 10.5812/ircmj.65035.

Copyright © 2018, Iranian Red Crescent Medical Journal. This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International License ( which permits copy and redistribute the material just in noncommercial usages, provided the original work is properly cited
1. Background
2. Methods
3. Results
4. Discussion
5. Conclusions
  • 1. Edwards BK, Brown ML, Wingo PA, Howe HL, Ward E, Ries LA, et al. Annual report to the nation on the status of cancer, 1975-2002, featuring population-based trends in cancer treatment. J Natl Cancer Inst. 2005;97(19):1407-27. doi: 10.1093/jnci/dji289. [PubMed: 16204691].
  • 2. Zhang H, Cai B. The impact of tobacco on lung health in China. Respirology. 2003;8(1):17-21. [PubMed: 12856737].
  • 3. Hu Z, Wu C, Shi Y, Guo H, Zhao X, Yin Z, et al. A genome-wide association study identifies two new lung cancer susceptibility loci at 13q12.12 and 22q12.2 in Han Chinese. Nat Genetics. 2011;43(8):792-6. doi: 10.1038/ng.875.
  • 4. Petty RD. Gene Expression Profiling in Non-Small Cell Lung Cancer: From Molecular Mechanisms to Clinical Application. Clin Cancer Res. 2004;10(10):3237-48. doi: 10.1158/1078-0432.ccr-03-0503.
  • 5. Yu D, Li J, Han Y, Liu S, Xiao N, Li Y, et al. Gene expression profiles of ERCC1, TYMS, RRM1, TUBB3 and EGFR in tumor tissue from non-small cell lung cancer patients. Chin Med J (Engl). 2014;127(8):1464-8. [PubMed: 24762590].
  • 6. Wang J, Song J, Gao Z, Huo X, Zhang Y, Wang W, et al. Analysis of gene expression profiles of non-small cell lung cancer at different stages reveals significantly altered biological functions and candidate genes. Oncol Rep. 2017;37(3):1736-46. doi: 10.3892/or.2017.5380.
  • 7. Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci U S A. 2005;102(43):15545-50. doi: 10.1073/pnas.0506580102. [PubMed: 16199517]. [PubMed Central: PMC1239896].
  • 8. Mootha VK, Lindgren CM, Eriksson KF, Subramanian A, Sihag S, Lehar J, et al. PGC-1alpha-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes. Nat Genet. 2003;34(3):267-73. doi: 10.1038/ng1180. [PubMed: 12808457].
  • 9. Cai B, Jiang X. Revealing Biological Pathways Implicated in Lung Cancer from TCGA Gene Expression Data Using Gene Set Enrichment Analysis. Cancer Inform. 2014;13(Suppl 1):113-21. doi: 10.4137/CIN.S13882. [PubMed: 25520551]. [PubMed Central: PMC4251186].
  • 10. Araujo JM, Prado A, Cardenas NK, Zaharia M, Dyer R, Doimi F, et al. Repeated observation of immune gene sets enrichment in women with non-small cell lung cancer. Oncotarget. 2016;7(15):20282-92. doi: 10.18632/oncotarget.7943. [PubMed: 26958810]. [PubMed Central: PMC4991454].
  • 11. Irizarry RA, Hobbs B, Collin F, Beazer-Barclay YD, Antonellis KJ, Scherf U, et al. Exploration, normalization, and summaries of high density oligonucleotide array probe level data. Biostatistics. 2003;4(2):249-64. doi: 10.1093/biostatistics/4.2.249. [PubMed: 12925520].
  • 12. Zhao H, Huang M, Chen Q, Wang Q, Pan Y. Comparative gene expression analysis in mouse models for identifying critical pathways in mammary gland development. Breast Cancer Res Treat. 2012;132(3):969-77. doi: 10.1007/s10549-011-1650-8. [PubMed: 21735046].
  • 13. Shi I, Hashemi Sadraei N, Duan ZH, Shi T. Aberrant signaling pathways in squamous cell lung carcinoma. Cancer Inform. 2011;10:273-85. doi: 10.4137/CIN.S8283. [PubMed: 22174565]. [PubMed Central: PMC3236010].
  • 14. Cancer Genome Atlas Research. Comprehensive genomic characterization of squamous cell lung cancers. Nature. 2012;489(7417):519-25. doi: 10.1038/nature11404.
  • 15. Cooper WA, Lam DC, O'Toole SA, Minna JD. Molecular biology of lung cancer. J Thorac Dis. 2013;5(5):479-90. doi: 10.3978/j.issn.2072-1439.2013.08.03.
  • 16. Schramm G, Surmann EM, Wiesberg S, Oswald M, Reinelt G, Eils R, et al. Analyzing the regulation of metabolic pathways in human breast cancer. BMC Med Genomics. 2010;3(1). doi: 10.1186/1755-8794-3-39.
  • 17. Tsouko E, Khan AS, White MA, Han JJ, Shi Y, Merchant FA, et al. Regulation of the pentose phosphate pathway by an androgen receptor–mTOR-mediated mechanism and its role in prostate cancer cell growth. Oncogenesis. 2014;3(5):e103. doi: 10.1038/oncsis.2014.18.
  • 18. Dennis JW, Granovsky M, Warren CE. Glycoprotein glycosylation and cancer progression. Biochim Biophys Acta. 1999;1473(1):21-34. eng. [PubMed: 10580127].
  • 19. Kailemia MJ, Park D, Lebrilla CB. Glycans and glycoproteins as specific biomarkers for cancer. Anal Bioanal Chem. 2017;409(2):395-410. eng. doi: 10.1007/s00216-016-9880-6. [PubMed: 27590322]. [PubMed Central: PMCPmc5203967].
  • 20. Lan Y, Hao C, Zeng X, He Y, Zeng P, Guo Z, et al. Serum glycoprotein-derived N- and O-linked glycans as cancer biomarkers. Am J Cancer Res. 2016;6(11):2390-415. [PubMed: 27904760]. [PubMed Central: PMC5126262].
  • 21. Zhao YY, Takahashi M, Gu JG, Miyoshi E, Matsumoto A, Kitazume S, et al. Functional roles of N-glycans in cell signaling and cell adhesion in cancer. Cancer Sci. 2008;99(7):1304-10. doi: 10.1111/j.1349-7006.2008.00839.x. [PubMed: 18492092].
  • 22. Swann JB, Smyth MJ. Immune surveillance of tumors. J Clin Invest. 2007;117(5):1137-46. doi: 10.1172/JCI31405. [PubMed: 17476343]. [PubMed Central: PMC1857231].
  • 23. Seliger B. Strategies of tumor immune evasion. BioDrugs. 2005;19(6):347-54. [PubMed: 16392887].
  • 24. Frumento G, Piazza T, Di Carlo E, Ferrini S. Targeting tumor-related immunosuppression for cancer immunotherapy. Endocr Metab Immune Disord Drug Targets. 2006;6(3):233-7. eng. [PubMed: 17017974].
  • 25. Domagala-Kulawik J, Osinska I. [Immune alterations in lung cancer - the new therapeutic approach]. Pneumonol Alergol Pol. 2014;82(3):286-99. pol. doi: 10.5603/PiAP.2014.0034. [PubMed: 24793154].
  • 26. Martin TA. The role of tight junctions in cancer metastasis. Semin Cell Dev Biol. 2014;36:224-31. eng. doi: 10.1016/j.semcdb.2014.09.008. [PubMed: 25239399].
  • 27. Aasen T, Mesnil M, Naus CC, Lampe PD, Laird DW. Gap junctions and cancer: communicating for 50 years. Nat Rev Cancer. 2016;16(12):775-88. eng. doi: 10.1038/nrc.2016.105. [PubMed: 27782134]. [PubMed Central: PMCPmc5279857].
  • 28. Trosko JE, Ruch RJ. Gap junctions as targets for cancer chemoprevention and chemotherapy. Curr Drug Targets. 2002;3(6):465-82. eng. [PubMed: 12448698].
  • 29. Shi H, Shi D, Wu Y, Shen Q, Li J. Qigesan inhibits migration and invasion of esophageal cancer cells via inducing connexin expression and enhancing gap junction function. Cancer Lett. 2016;380(1):184-90. eng. doi: 10.1016/j.canlet.2016.06.015. [PubMed: 27345741].
  • 30. Berrier AL, Yamada KM. Cell-matrix adhesion. J Cell Physiol. 2007;213(3):565-73. eng. doi: 10.1002/jcp.21237. [PubMed: 17680633].
  • 31. Nigam AK, Savage FJ, Boulos PB, Stamp GW, Liu D, Pignatelli M. Loss of cell-cell and cell-matrix adhesion molecules in colorectal cancer. Br J Cancer. 1993;68(3):507-14. eng. [PubMed: 8353041]. [PubMed Central: PMCPmc1968382].
  • 32. Toyooka S, Tsuda T, Gazdar AF. The TP53 gene, tobacco exposure, and lung cancer. Hum Mutat. 2003;21(3):229-39. eng. doi: 10.1002/humu.10177. [PubMed: 12619108].
  • 33. Shigematsu H, Lin L, Takahashi T, Nomura M, Suzuki M, Wistuba ,I, et al. Clinical and biological features associated with epidermal growth factor receptor gene mutations in lung cancers. J Natl Cancer Inst. 2005;97(5):339-46. eng. doi: 10.1093/jnci/dji055. [PubMed: 15741570].
  • 34. Martin P, Kelly CM, Carney D. Epidermal growth factor receptor-targeted agents for lung cancer. Cancer Control. 2006;13(2):129-40. eng. doi: 10.1177/107327480601300207. [PubMed: 16735987].
  • 35. Yamamoto H, Shigematsu H, Nomura M, Lockwood WW, Sato M, Okumura N, et al. PIK3CA mutations and copy number gains in human lung cancers. Cancer Res. 2008;68(17):6913-21. eng. doi: 10.1158/0008-5472.can-07-5084. [PubMed: 18757405]. [PubMed Central: PMCPmc2874836].
  • 36. Gao SY, Li J, Qu XY, Zhu N, Ji YB. Downregulation of Cdk1 and cyclinB1 expression contributes to oridonin-induced cell cycle arrest at G2/M phase and growth inhibition in SGC-7901 gastric cancer cells. Asian Pac J Cancer Prev. 2014;15(15):6437-41. eng. [PubMed: 25124639].
  • 37. Sung WW, Lin YM, Wu PR, Yen HH, Lai HW, Su TC, et al. High nuclear/cytoplasmic ratio of Cdk1 expression predicts poor prognosis in colorectal cancer patients. BMC Cancer. 2014;14:951. eng. doi: 10.1186/1471-2407-14-951. [PubMed: 25511643]. [PubMed Central: PMCPmc4302138].
  • 38. Nakayama S, Torikoshi Y, Takahashi T, Yoshida T, Sudo T, Matsushima T, et al. Prediction of paclitaxel sensitivity by CDK1 and CDK2 activity in human breast cancer cells. Breast Cancer Res. 2009;11(1):R12. eng. doi: 10.1186/bcr2231. [PubMed: 19239702]. [PubMed Central: PMCPmc2687717].
  • 39. Shi Q, Zhou Z, Ye N, Chen Q, Zheng X, Fang M. MiR-181a inhibits non-small cell lung cancer cell proliferation by targeting CDK1. Cancer Biomark. 2017;20(4):539-46. eng. doi: 10.3233/cbm-170350. [PubMed: 28946554].
  • 40. Pu S, Zhao Y, Zhou G, Zhu H, Gong L, Zhang W, et al. Effect of CDK1 shRNA on proliferation, migration, cell cycle and apoptosis in non-small cell lung cancer. J Cell Physiol. 2018;233(9):7514. eng. doi: 10.1002/jcp.26387. [PubMed: 29226963].
  • 41. Yan LX, Liu YH, Xiang JW, Wu QN, Xu LB, Luo XL, et al. PIK3R1 targeting by miR-21 suppresses tumor cell migration and invasion by reducing PI3K/AKT signaling and reversing EMT, and predicts clinical outcome of breast cancer. Int J Oncol. 2016;48(2):471-84. eng. doi: 10.3892/ijo.2015.3287. [PubMed: 26676464]. [PubMed Central: PMCPmc4725461].
  • 42. Cheung LW, Hennessy BT, Li J, Yu S, Myers AP, Djordjevic B, et al. High frequency of PIK3R1 and PIK3R2 mutations in endometrial cancer elucidates a novel mechanism for regulation of PTEN protein stability. Cancer Discov. 2011;1(2):170-85. eng. doi: 10.1158/ [PubMed: 21984976]. [PubMed Central: PMCPmc3187555].
  • 43. Lin Y, Yang Z, Xu A, Dong P, Huang Y, Liu H, et al. PIK3R1 negatively regulates the epithelial-mesenchymal transition and stem-like phenotype of renal cancer cells through the AKT/GSK3beta/CTNNB1 signaling pathway. Sci Rep. 2015;5:8997. eng. doi: 10.1038/srep08997. [PubMed: 25757764]. [PubMed Central: PMCPmc4355729].

Featured Image:

Creative Commons License Except where otherwise noted, this work is licensed under Creative Commons Attribution Non Commercial 4.0 International License .

Search Relations:



Create Citiation Alert
via Google Reader

Readers' Comments