Iranian Red Crescent Medical Journal

Published by: Kowsar

The Effects of Insulin-Like Growth Factor-1 Gene Therapy and Cell Transplantation on Rat Acute Wound Model

Fereshteh Talebpour Amiri 1 , Fatemeh Fadaei Fathabadi 1 , Mahnaz Mahmoudi Rad 2 , * , Abbas Piryae 1 , Azar Ghasemi 3 , Alireza Khalilian 4 , Farshid Yeganeh 5 and Nariman Mosaffa 5
Authors Information
1 Department of Anatomy, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, IR Iran
2 Skin Research Centre, Shahid Beheshti University of Medical Sciences, Tehran, IR Iran
3 Department of Pathology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, IR Iran
4 Department of Biostatistics and Social Medicine, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, IR Iran
5 Department of Immunology, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, IR Iran
This article has been corrected. See Corrigendum to: The Effects of Insulin-Like Growth Factor-1 Gene Therapy and Cell Transplantation on Rat Acute Wound Model.
Article information
  • Iranian Red Crescent Medical Journal: October 01, 2014, 16 (10); e16323
  • Published Online: October 5, 2014
  • Article Type: Research Article
  • Received: November 28, 2013
  • Revised: January 8, 2014
  • Accepted: March 11, 2014
  • DOI: 10.5812/ircmj.16323

To Cite: Talebpour Amiri F, Fadaei Fathabadi F, Mahmoudi Rad M, Piryae A, Ghasemi A, et al. The Effects of Insulin-Like Growth Factor-1 Gene Therapy and Cell Transplantation on Rat Acute Wound Model, Iran Red Crescent Med J. 2014 ; 16(10):e16323. doi: 10.5812/ircmj.16323.

Copyright © 2014, Iranian Red Crescent Medical Journal. This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International License ( which permits copy and redistribute the material just in noncommercial usages, provided the original work is properly cited.
1. Background
2. Objectives
3. Materials and Methods
4. Results
5. Discussion
  • 1. Vuorisalo S, Venermo M, Lepantalo M. Treatment of diabetic foot ulcers. J Cardiovasc Surg (Torino). 2009; 50(3): 275-91[PubMed]
  • 2. Brusselaers N, Pirayesh A, Hoeksema H, Richters CD, Verbelen J, Beele H, et al. Skin replacement in burn wounds. J Trauma. 2010; 68(2): 490-501[DOI][PubMed]
  • 3. Holavanahalli RK, Helm PA, Kowalske KJ. Long-term outcomes in patients surviving large burns: the skin. J Burn Care Res. 2010; 31(4): 631-9[DOI][PubMed]
  • 4. Fredriksson C, Kratz G, Huss F. Transplantation of cultured human keratinocytes in single cell suspension: a comparative in vitro study of different application techniques. Burns. 2008; 34(2): 212-9[DOI][PubMed]
  • 5. Munster AM. Use of cultured epidermal autograft in ten patients. J Burn Care Rehabil. 1992; 13(1): 124-6[PubMed]
  • 6. Singer AJ, Clark RA. Cutaneous wound healing. N Engl J Med. 1999; 341(10): 738-46[DOI][PubMed]
  • 7. Nassar D, Blanpain C. Epidermal development and homeostasis. Semin Cell Dev Biol. 2012; 23(8): 883[DOI][PubMed]
  • 8. Kanzler MH, Gorsulowsky DC, Swanson NA. Basic mechanisms in the healing cutaneous wound. J Dermatol Surg Oncol. 1986; 12(11): 1156-64[PubMed]
  • 9. Kopecki Z, Luchetti MM, Adams DH, Strudwick X, Mantamadiotis T, Stoppacciaro A, et al. Collagen loss and impaired wound healing is associated with c-Myb deficiency. J Pathol. 2007; 211(3): 351-61[DOI][PubMed]
  • 10. Lee SW, Kim SH, Kim JY, Lee Y. The effect of growth hormone on fibroblast proliferation and keratinocyte migration. J Plast Reconstr Aesthet Surg. 2010; 63(4)-9[DOI][PubMed]
  • 11. Svensjo T, Yao F, Pomahac B, Winkler T, Eriksson E. Cultured autologous fibroblasts augment epidermal repair. Transplantation. 2002; 73(7): 1033-41[PubMed]
  • 12. Velander P, Theopold C, Bleiziffer O, Bergmann J, Svensson H, Feng Y, et al. Cell suspensions of autologous keratinocytes or autologous fibroblasts accelerate the healing of full thickness skin wounds in a diabetic porcine wound healing model. J Surg Res. 2009; 157(1): 14-20[DOI][PubMed]
  • 13. Mansbridge JN, Liu K, Pinney RE, Patch R, Ratcliffe A, Naughton GK. Growth factors secreted by fibroblasts: role in healing diabetic foot ulcers. Diabetes Obes Metab. 1999; 1(5): 265-79[PubMed]
  • 14. Takehara K. Growth regulation of skin fibroblasts. J Dermatol Sci. 2000; 24 Suppl 1-7[PubMed]
  • 15. Bitar MS, Al-Mulla F. ROS constitute a convergence nexus in the development of IGF1 resistance and impaired wound healing in a rat model of type 2 diabetes. Dis Model Mech. 2012; 5(3): 375-88[DOI][PubMed]
  • 16. Jeschke MG, Schubert T, Krickhahn M, Polykandriotis E, Klein D, Perez-Polo JR, et al. Interaction of exogenous liposomal insulin-like growth factor-I cDNA gene transfer with growth factors on collagen expression in acute wounds. Wound Repair Regen. 2005; 13(3): 269-77[DOI][PubMed]
  • 17. Yu DH, Mace KA, Hansen SL, Boudreau N, Young DM. Effects of decreased insulin-like growth factor-1 stimulation on hypoxia inducible factor 1-alpha protein synthesis and function during cutaneous repair in diabetic mice. Wound Repair Regen. 2007; 15(5): 628-35[DOI][PubMed]
  • 18. Blakytny R, Jude EB, Martin Gibson J, Boulton AJ, Ferguson MW. Lack of insulin-like growth factor 1 (IGF1) in the basal keratinocyte layer of diabetic skin and diabetic foot ulcers. J Pathol. 2000; 190(5): 589-94[DOI][PubMed]
  • 19. Hassmann-Poznanska E, Taranta A, Bialuk I, Poznanska M, Zajaczkiewicz H, Winnicka MM. Analysis of gene expression profiles in tympanic membrane following perforation using PCR Array in rats--preliminary investigation. Int J Pediatr Otorhinolaryngol. 2013; 77(10): 1753-9[DOI][PubMed]
  • 20. Bitar MS. Insulin and glucocorticoid-dependent suppression of the IGF-I system in diabetic wounds. Surgery. 2000; 127(6): 687-95[DOI][PubMed]
  • 21. Todorovic V, Pesko P, Micev M, Bjelovic M, Budec M, Micic M, et al. Insulin-like growth factor-I in wound healing of rat skin. Regul Pept. 2008; 150(1-3): 7-13[DOI][PubMed]
  • 22. Peplow PV, Baxter GD. Gene expression and release of growth factors during delayed wound healing: a review of studies in diabetic animals and possible combined laser phototherapy and growth factor treatment to enhance healing. Photomed Laser Surg. 2012; 30(11): 617-36[DOI][PubMed]
  • 23. Hirsch T, Spielmann M, Velander P, Zuhaili B, Bleiziffer O, Fossum M, et al. Insulin-like growth factor-1 gene therapy and cell transplantation in diabetic wounds. J Gene Med. 2008; 10(11): 1247-52[DOI][PubMed]
  • 24. Kratz G, Lake M, Ljungstrom K, Forsberg G, Haegerstrand A, Gidlund M. Effect of recombinant IGF binding protein-1 on primary cultures of human keratinocytes and fibroblasts: selective enhancement of IGF-1 but not IGF-2-induced cell proliferation. Exp Cell Res. 1992; 202(2): 381-5[PubMed]
  • 25. Lynch SE, Nixon JC, Colvin RB, Antoniades HN. Role of platelet-derived growth factor in wound healing: synergistic effects with other growth factors. Proc Natl Acad Sci U S A. 1987; 84(21): 7696-700[PubMed]
  • 26. Pereira CT, Herndon DN, Rocker R, Jeschke MG. Liposomal gene transfer of keratinocyte growth factor improves wound healing by altering growth factor and collagen expression. J Surg Res. 2007; 139(2): 222-8[DOI][PubMed]
  • 27. Jazwa A, Kucharzewska P, Leja J, Zagorska A, Sierpniowska A, Stepniewski J, et al. Combined vascular endothelial growth factor-A and fibroblast growth factor 4 gene transfer improves wound healing in diabetic mice. Genet Vaccines Ther. 2010; 8: 6[DOI][PubMed]
  • 28. Hirsch T, Spielmann M, Yao F, Eriksson E. Gene therapy in cutaneous wound healing. Front Biosci. 2007; 12: 2507-18[PubMed]
  • 29. Streit M, Braathen LR. Apligraf--a living human skin equivalent for the treatment of chronic wounds. Int J Artif Organs. 2000; 23(12): 831-3[PubMed]
  • 30. Loots MA, Lamme EN, Mekkes JR, Bos JD, Middelkoop E. Cultured fibroblasts from chronic diabetic wounds on the lower extremity (non-insulin-dependent diabetes mellitus) show disturbed proliferation. Arch Dermatol Res. 1999; 291(2-3): 93-9[PubMed]
  • 31. Greenhalgh DG. Wound healing and diabetes mellitus. Clin Plast Surg. 2003; 30(1): 37-45[PubMed]
  • 32. Blakytny R, Jude E. The molecular biology of chronic wounds and delayed healing in diabetes. Diabet Med. 2006; 23(6): 594-608[DOI][PubMed]
  • 33. Cross SE, Roberts MS. Defining a model to predict the distribution of topically applied growth factors and other solutes in excisional full-thickness wounds. J Invest Dermatol. 1999; 112(1): 36-41[DOI][PubMed]
  • 34. Peplow PV, Chatterjee MP. A review of the influence of growth factors and cytokines in in vitro human keratinocyte migration. Cytokine. 2013; 62(1): 1-21[DOI][PubMed]
  • 35. Montagna W, Yun JS. The Skin of the Domestic Pig. J Invest Dermatol. 1964; 42: 11-21[PubMed]
Creative Commons License Except where otherwise noted, this work is licensed under Creative Commons Attribution Non Commercial 4.0 International License .

Search Relations:



Create Citiation Alert
via Google Reader

Readers' Comments