Iranian Red Crescent Medical Journal

Published by: Kowsar

Decreased Activity in Neuropathic Pain Form and Gene Expression of Cyclin-Dependent Kinase5 and Glycogen Synthase Kinase-3 Beta in Soleus Muscle of Wistar Male Rats

Masoud Rahmati 1 , * , Seyed Jalal Taherabadi 1 and Mahmoud Mehrabi 1
Authors Information
1 Department of Physical Education and Sport Sciences, Lorestan University, Khoram Abad, IR Iran
Article information
  • Iranian Red Crescent Medical Journal: June 01, 2015, 17 (6); e23324
  • Published Online: June 23, 2015
  • Article Type: Research Article
  • Received: September 6, 2014
  • Revised: November 18, 2014
  • Accepted: March 25, 2015
  • DOI: 10.5812/ircmj.23324

To Cite: Rahmati M, Taherabadi S J, Mehrabi M. Decreased Activity in Neuropathic Pain Form and Gene Expression of Cyclin-Dependent Kinase5 and Glycogen Synthase Kinase-3 Beta in Soleus Muscle of Wistar Male Rats, Iran Red Crescent Med J. 2015 ; 17(6):e23324. doi: 10.5812/ircmj.23324.

Copyright © 2015, Iranian Red Crescent Medical Journal. This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International License ( which permits copy and redistribute the material just in noncommercial usages, provided the original work is properly cited.
1. Background
2. Objectives
3. Materials and Methods
4. Results
5. Discussion
  • 1. Treede RD, Jensen TS, Campbell JN, Cruccu G, Dostrovsky JO, Griffin JW, et al. Neuropathic pain: redefinition and a grading system for clinical and research purposes. Neurology. 2008; 70(18): 1630-5[DOI][PubMed]
  • 2. Barkin RL, Barkin SJ, Barkin DS. Perception, assessment, treatment, and management of pain in the elderly. Clin Geriatr Med. 2005; 21(3): 465-90[DOI][PubMed]
  • 3. van den Berg-Emons RJ, Schasfoort FC, de Vos LA, Bussmann JB, Stam HJ. Impact of chronic pain on everyday physical activity. Eur J Pain. 2007; 11(5): 587-93[DOI][PubMed]
  • 4. Evans WJ. Skeletal muscle loss: cachexia, sarcopenia, and inactivity. Am J Clin Nutr. 2010; 91(4): 1123S-7S[DOI][PubMed]
  • 5. Daemen MARC, Kurvers HAJM, Bullens PHJ, Slaaf DW, Freling G, Kitslaar PJEHM, et al. Motor denervation induces altered muscle fibre type densities and atrophy in a rat model of neuropathic pain. Neuroscience Letters. 1998; 247(2-3): 204-8[DOI]
  • 6. Beehler BC, Sleph PG, Benmassaoud L, Grover GJ. Reduction of skeletal muscle atrophy by a proteasome inhibitor in a rat model of denervation. Exp Biol Med (Maywood). 2006; 231(3): 335-41[PubMed]
  • 7. Choe MA, Kim KH, An GJ, Lee KS, Heitkemper M. Hindlimb muscle atrophy occurs from peripheral nerve damage in a rat neuropathic pain model. Biol Res Nurs. 2011; 13(1): 44-54[DOI][PubMed]
  • 8. Moes JR, Holden JE. Characterizing activity and muscle atrophy changes in rats with neuropathic pain: a pilot study. Biol Res Nurs. 2014; 16(1): 16-22[DOI][PubMed]
  • 9. Smith DS, Greer PL, Tsai LH. Cdk5 on the brain. Cell Growth Differ. 2001; 12(6): 277-83[PubMed]
  • 10. Durnberger G, Camurdanoglu BZ, Tomschik M, Schutzbier M, Roitinger E, Hudecz O, et al. Global analysis of muscle-specific kinase signaling by quantitative phosphoproteomics. Mol Cell Proteomics. 2014; 13(8): 1993-2003[DOI][PubMed]
  • 11. Alkon DL, Sun MK, Nelson TJ. PKC signaling deficits: a mechanistic hypothesis for the origins of Alzheimer's disease. Trends Pharmacol Sci. 2007; 28(2): 51-60[DOI][PubMed]
  • 12. Woodgett JR. Judging a protein by more than its name: GSK-3. Sci STKE. 2001; 2001(100)[DOI][PubMed]
  • 13. Parkitna JR, Obara I, Wawrzczak-Bargiela A, Makuch W, Przewlocka B, Przewlocki R. Effects of glycogen synthase kinase 3beta and cyclin-dependent kinase 5 inhibitors on morphine-induced analgesia and tolerance in rats. J Pharmacol Exp Ther. 2006; 319(2): 832-9[DOI][PubMed]
  • 14. Pareek TK, Keller J, Kesavapany S, Pant HC, Iadarola MJ, Brady RO, et al. Cyclin-dependent kinase 5 activity regulates pain signaling. Proc Natl Acad Sci U S A. 2006; 103(3): 791-6[DOI][PubMed]
  • 15. Verhees KJ, Schols AM, Kelders MC, Op den Kamp CM, van der Velden JL, Langen RC. Glycogen synthase kinase-3beta is required for the induction of skeletal muscle atrophy. Am J Physiol Cell Physiol. 2011; 301(5)[DOI][PubMed]
  • 16. Rosales JL, Lee KY. Extraneuronal roles of cyclin-dependent kinase 5. Bioessays. 2006; 28(10): 1023-34[DOI][PubMed]
  • 17. Knight JDR, Kothary R. The myogenic kinome: protein kinases critical to mammalian skeletal myogenesis. Skeletal Muscle. 2011; 1(1): 29[DOI]
  • 18. Ho Kim S, Mo Chung J. An experimental model for peripheral neuropathy produced by segmental spinal nerve ligation in the rat. Pain. 1992; 50(3): 355-63[DOI]
  • 19. Cruccu G, Anand P, Attal N, Garcia-Larrea L, Haanpaa M, Jorum E, et al. EFNS guidelines on neuropathic pain assessment. Eur J Neurol. 2004; 11(3): 153-62[PubMed]
  • 20. Yin FC, Spurgeon HA, Rakusan K, Weisfeldt ML, Lakatta EG. Use of tibial length to quantify cardiac hypertrophy: application in the aging rat. Am J Physiol. 1982; 243(6)-7[PubMed]
  • 21. Pfaffl MW. A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res. 2001; 29(9)[PubMed]
  • 22. Pareek TK. Cdk5: An Emerging Kinase in Pain Signaling. Brain Disor Thera. 2012; 1[DOI]
  • 23. Gobrecht P, Leibinger M, Andreadaki A, Fischer D. Sustained GSK3 activity markedly facilitates nerve regeneration. Nature Commun. 2014; 5[DOI]
  • 24. Stuempfle KJ, Drury DG. The physiological consequences of bed rest. J exercise physiol. 2007; 10(3)
  • 25. Ip FC, Glass DG, Gies DR, Cheung J, Lai KO, Fu AK, et al. Cloning and characterization of muscle-specific kinase in chicken. Mol Cell Neurosci. 2000; 16(5): 661-73[DOI][PubMed]
  • 26. Fu WY, Fu AKY, Lok K, Ip FCF, Ip NY. Induction of Cdk5 activity in rat skeletal muscle after nerve injury. Neuroreport. 2002; 13(2): 243-7[DOI]
  • 27. Lindboe CF, Presthus J. Effects of denervation, immobilization and cachexia on fibre size in the anterior tibial muscle of the rat. Acta Neuropathol. 1985; 66(1): 42-51[PubMed]
  • 28. Isfort RJ, Wang F, Greis KD, Sun Y, Keough TW, Bodine SC, et al. Proteomic analysis of rat soleus and tibialis anterior muscle following immobilization. J Chromatography B. 2002; 769(2): 323-32[DOI]
  • 29. Greensmith L, Hind A, Vrbová G. Neonatal paralysis of the rat soleus muscle selectively affects motoneurones from more caudal segments of the spinal cord. Dev Brain Res. 1997; 98(2): 281-6[DOI]
  • 30. O'Leary MF, Hood DA. Denervation-induced oxidative stress and autophagy signaling in muscle. Autophagy. 2009; 5(2): 230-1[PubMed]
  • 31. Su SC, Tsai LH. Cyclin-dependent kinases in brain development and disease. Annu Rev Cell Dev Biol. 2011; 27: 465-91[DOI][PubMed]
  • 32. Beurel E, Jope RS. The paradoxical pro- and anti-apoptotic actions of GSK3 in the intrinsic and extrinsic apoptosis signaling pathways. Prog Neurobiol. 2006; 79(4): 173-89[DOI][PubMed]
  • 33. Evenson AR, Fareed MU, Menconi MJ, Mitchell JC, Hasselgren PO. GSK-3beta inhibitors reduce protein degradation in muscles from septic rats and in dexamethasone-treated myotubes. Int J Biochem Cell Biol. 2005; 37(10): 2226-38[DOI][PubMed]
  • 34. Fang CH, Li BG, James JH, King JK, Evenson AR, Warden GD, et al. Protein breakdown in muscle from burned rats is blocked by insulin-like growth factor i and glycogen synthase kinase-3beta inhibitors. Endocrinology. 2005; 146(7): 3141-9[DOI][PubMed]
  • 35. Sacheck JM. IGF-I stimulates muscle growth by suppressing protein breakdown and expression of atrophy-related ubiquitin ligases, atrogin-1 and MuRF1. AJP: Endocrinol Metabol. 2004; 287(4)-601[DOI]
  • 36. Cross DA, Alessi DR, Cohen P, Andjelkovich M, Hemmings BA. Inhibition of glycogen synthase kinase-3 by insulin mediated by protein kinase B. Nature. 1995; 378(6559): 785-9[DOI][PubMed]
  • 37. van Weeren PC, de Bruyn KM, de Vries-Smits AM, van Lint J, Burgering BM. Essential role for protein kinase B (PKB) in insulin-induced glycogen synthase kinase 3 inactivation. Characterization of dominant-negative mutant of PKB. J Biol Chem. 1998; 273(21): 13150-6[PubMed]
  • 38. Latres E, Amini AR, Amini AA, Griffiths J, Martin FJ, Wei Y, et al. Insulin-like growth factor-1 (IGF-1) inversely regulates atrophy-induced genes via the phosphatidylinositol 3-kinase/Akt/mammalian target of rapamycin (PI3K/Akt/mTOR) pathway. J Biol Chem. 2005; 280(4): 2737-44[DOI][PubMed]
  • 39. Glass DJ. Skeletal muscle hypertrophy and atrophy signaling pathways. Int J Biochem Cell Biol. 2005; 37(10): 1974-84[DOI][PubMed]
  • 40. Schiaffino S, Mammucari C. Regulation of skeletal muscle growth by the IGF1-Akt/PKB pathway: insights from genetic models. Skeletal Muscle. 2011; 1(1): 4[DOI]
  • 41. Welsh GI, Miller CM, Loughlin AJ, Price NT, Proud CG. Regulation of eukaryotic initiation factor eIF2B: glycogen synthase kinase-3 phosphorylates a conserved serine which undergoes dephosphorylation in response to insulin. FEBS Letters. 1998; 421(2): 125-30[DOI]
  • 42. Rommel C, Bodine SC, Clarke BA, Rossman R, Nunez L, Stitt TN, et al. Mediation of IGF-1-induced skeletal myotube hypertrophy by PI(3)K/Akt/mTOR and PI(3)K/Akt/GSK3 pathways. Nat Cell Biol. 2001; 3(11): 1009-13[DOI][PubMed]
  • 43. Vivanco I, Sawyers CL. The phosphatidylinositol 3-Kinase AKT pathway in human cancer. Nat Rev Cancer. 2002; 2(7): 489-501[DOI][PubMed]
  • 44. Jones K, Wei C, Iakova P, Bugiardini E, Schneider-Gold C, Meola G, et al. GSK3beta mediates muscle pathology in myotonic dystrophy. J Clin Invest. 2012; 122(12): 4461-72[DOI][PubMed]
  • 45. Bertsch S, Lang CH, Vary TC. Inhibition of glycogen synthase kinase 3[beta] activity with lithium in vitro attenuates sepsis-induced changes in muscle protein turnover. Shock. 2011; 35(3): 266-74[DOI][PubMed]
  • 46. Leger B, Cartoni R, Praz M, Lamon S, Deriaz O, Crettenand A, et al. Akt signalling through GSK-3beta, mTOR and Foxo1 is involved in human skeletal muscle hypertrophy and atrophy. J Physiol. 2006; 576: 923-33[DOI][PubMed]
  • 47. Lee MH, Amin ND, Venkatesan A, Wang T, Tyagi R, Pant HC, et al. Impaired neurogenesis and neurite outgrowth in an HIV-gp120 transgenic model is reversed by exercise via BDNF production and Cdk5 regulation. J Neurovirol. 2013; 19(5): 418-31[DOI][PubMed]
Creative Commons License Except where otherwise noted, this work is licensed under Creative Commons Attribution Non Commercial 4.0 International License .

Search Relations:



Create Citiation Alert
via Google Reader

Readers' Comments