Iranian Red Crescent Medical Journal

Published by: Kowsar

Decreased Activity in Neuropathic Pain Form and Gene Expression of Cyclin-Dependent Kinase5 and Glycogen Synthase Kinase-3 Beta in Soleus Muscle of Wistar Male Rats

Masoud Rahmati 1 , * , Seyed Jalal Taherabadi 1 and Mahmoud Mehrabi 1
Authors Information
1 Department of Physical Education and Sport Sciences, Lorestan University, Khoram Abad, IR Iran
Article information
  • Iranian Red Crescent Medical Journal: June 01, 2015, 17 (6); e23324
  • Published Online: June 23, 2015
  • Article Type: Research Article
  • Received: September 6, 2014
  • Revised: November 18, 2014
  • Accepted: March 25, 2015
  • DOI: 10.5812/ircmj.23324

To Cite: Rahmati M, Taherabadi S J, Mehrabi M. Decreased Activity in Neuropathic Pain Form and Gene Expression of Cyclin-Dependent Kinase5 and Glycogen Synthase Kinase-3 Beta in Soleus Muscle of Wistar Male Rats, Iran Red Crescent Med J. 2015 ; 17(6):e23324. doi: 10.5812/ircmj.23324.

Abstract
Copyright © 2015, Iranian Red Crescent Medical Journal. This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-nc/4.0/) which permits copy and redistribute the material just in noncommercial usages, provided the original work is properly cited.
1. Background
2. Objectives
3. Materials and Methods
4. Results
5. Discussion
Acknowledgements
Footnotes
References
  • 1. Treede RD, Jensen TS, Campbell JN, Cruccu G, Dostrovsky JO, Griffin JW, et al. Neuropathic pain: redefinition and a grading system for clinical and research purposes. Neurology. 2008; 70(18): 1630-5[DOI][PubMed]
  • 2. Barkin RL, Barkin SJ, Barkin DS. Perception, assessment, treatment, and management of pain in the elderly. Clin Geriatr Med. 2005; 21(3): 465-90[DOI][PubMed]
  • 3. van den Berg-Emons RJ, Schasfoort FC, de Vos LA, Bussmann JB, Stam HJ. Impact of chronic pain on everyday physical activity. Eur J Pain. 2007; 11(5): 587-93[DOI][PubMed]
  • 4. Evans WJ. Skeletal muscle loss: cachexia, sarcopenia, and inactivity. Am J Clin Nutr. 2010; 91(4): 1123S-7S[DOI][PubMed]
  • 5. Daemen MARC, Kurvers HAJM, Bullens PHJ, Slaaf DW, Freling G, Kitslaar PJEHM, et al. Motor denervation induces altered muscle fibre type densities and atrophy in a rat model of neuropathic pain. Neuroscience Letters. 1998; 247(2-3): 204-8[DOI]
  • 6. Beehler BC, Sleph PG, Benmassaoud L, Grover GJ. Reduction of skeletal muscle atrophy by a proteasome inhibitor in a rat model of denervation. Exp Biol Med (Maywood). 2006; 231(3): 335-41[PubMed]
  • 7. Choe MA, Kim KH, An GJ, Lee KS, Heitkemper M. Hindlimb muscle atrophy occurs from peripheral nerve damage in a rat neuropathic pain model. Biol Res Nurs. 2011; 13(1): 44-54[DOI][PubMed]
  • 8. Moes JR, Holden JE. Characterizing activity and muscle atrophy changes in rats with neuropathic pain: a pilot study. Biol Res Nurs. 2014; 16(1): 16-22[DOI][PubMed]
  • 9. Smith DS, Greer PL, Tsai LH. Cdk5 on the brain. Cell Growth Differ. 2001; 12(6): 277-83[PubMed]
  • 10. Durnberger G, Camurdanoglu BZ, Tomschik M, Schutzbier M, Roitinger E, Hudecz O, et al. Global analysis of muscle-specific kinase signaling by quantitative phosphoproteomics. Mol Cell Proteomics. 2014; 13(8): 1993-2003[DOI][PubMed]
  • 11. Alkon DL, Sun MK, Nelson TJ. PKC signaling deficits: a mechanistic hypothesis for the origins of Alzheimer's disease. Trends Pharmacol Sci. 2007; 28(2): 51-60[DOI][PubMed]
  • 12. Woodgett JR. Judging a protein by more than its name: GSK-3. Sci STKE. 2001; 2001(100)[DOI][PubMed]
  • 13. Parkitna JR, Obara I, Wawrzczak-Bargiela A, Makuch W, Przewlocka B, Przewlocki R. Effects of glycogen synthase kinase 3beta and cyclin-dependent kinase 5 inhibitors on morphine-induced analgesia and tolerance in rats. J Pharmacol Exp Ther. 2006; 319(2): 832-9[DOI][PubMed]
  • 14. Pareek TK, Keller J, Kesavapany S, Pant HC, Iadarola MJ, Brady RO, et al. Cyclin-dependent kinase 5 activity regulates pain signaling. Proc Natl Acad Sci U S A. 2006; 103(3): 791-6[DOI][PubMed]
  • 15. Verhees KJ, Schols AM, Kelders MC, Op den Kamp CM, van der Velden JL, Langen RC. Glycogen synthase kinase-3beta is required for the induction of skeletal muscle atrophy. Am J Physiol Cell Physiol. 2011; 301(5)[DOI][PubMed]
  • 16. Rosales JL, Lee KY. Extraneuronal roles of cyclin-dependent kinase 5. Bioessays. 2006; 28(10): 1023-34[DOI][PubMed]
  • 17. Knight JDR, Kothary R. The myogenic kinome: protein kinases critical to mammalian skeletal myogenesis. Skeletal Muscle. 2011; 1(1): 29[DOI]
  • 18. Ho Kim S, Mo Chung J. An experimental model for peripheral neuropathy produced by segmental spinal nerve ligation in the rat. Pain. 1992; 50(3): 355-63[DOI]
  • 19. Cruccu G, Anand P, Attal N, Garcia-Larrea L, Haanpaa M, Jorum E, et al. EFNS guidelines on neuropathic pain assessment. Eur J Neurol. 2004; 11(3): 153-62[PubMed]
  • 20. Yin FC, Spurgeon HA, Rakusan K, Weisfeldt ML, Lakatta EG. Use of tibial length to quantify cardiac hypertrophy: application in the aging rat. Am J Physiol. 1982; 243(6)-7[PubMed]
  • 21. Pfaffl MW. A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res. 2001; 29(9)[PubMed]
  • 22. Pareek TK. Cdk5: An Emerging Kinase in Pain Signaling. Brain Disor Thera. 2012; 1[DOI]
  • 23. Gobrecht P, Leibinger M, Andreadaki A, Fischer D. Sustained GSK3 activity markedly facilitates nerve regeneration. Nature Commun. 2014; 5[DOI]
  • 24. Stuempfle KJ, Drury DG. The physiological consequences of bed rest. J exercise physiol. 2007; 10(3)
  • 25. Ip FC, Glass DG, Gies DR, Cheung J, Lai KO, Fu AK, et al. Cloning and characterization of muscle-specific kinase in chicken. Mol Cell Neurosci. 2000; 16(5): 661-73[DOI][PubMed]
  • 26. Fu WY, Fu AKY, Lok K, Ip FCF, Ip NY. Induction of Cdk5 activity in rat skeletal muscle after nerve injury. Neuroreport. 2002; 13(2): 243-7[DOI]
  • 27. Lindboe CF, Presthus J. Effects of denervation, immobilization and cachexia on fibre size in the anterior tibial muscle of the rat. Acta Neuropathol. 1985; 66(1): 42-51[PubMed]
  • 28. Isfort RJ, Wang F, Greis KD, Sun Y, Keough TW, Bodine SC, et al. Proteomic analysis of rat soleus and tibialis anterior muscle following immobilization. J Chromatography B. 2002; 769(2): 323-32[DOI]
  • 29. Greensmith L, Hind A, Vrbová G. Neonatal paralysis of the rat soleus muscle selectively affects motoneurones from more caudal segments of the spinal cord. Dev Brain Res. 1997; 98(2): 281-6[DOI]
  • 30. O'Leary MF, Hood DA. Denervation-induced oxidative stress and autophagy signaling in muscle. Autophagy. 2009; 5(2): 230-1[PubMed]
  • 31. Su SC, Tsai LH. Cyclin-dependent kinases in brain development and disease. Annu Rev Cell Dev Biol. 2011; 27: 465-91[DOI][PubMed]
  • 32. Beurel E, Jope RS. The paradoxical pro- and anti-apoptotic actions of GSK3 in the intrinsic and extrinsic apoptosis signaling pathways. Prog Neurobiol. 2006; 79(4): 173-89[DOI][PubMed]
  • 33. Evenson AR, Fareed MU, Menconi MJ, Mitchell JC, Hasselgren PO. GSK-3beta inhibitors reduce protein degradation in muscles from septic rats and in dexamethasone-treated myotubes. Int J Biochem Cell Biol. 2005; 37(10): 2226-38[DOI][PubMed]
  • 34. Fang CH, Li BG, James JH, King JK, Evenson AR, Warden GD, et al. Protein breakdown in muscle from burned rats is blocked by insulin-like growth factor i and glycogen synthase kinase-3beta inhibitors. Endocrinology. 2005; 146(7): 3141-9[DOI][PubMed]
  • 35. Sacheck JM. IGF-I stimulates muscle growth by suppressing protein breakdown and expression of atrophy-related ubiquitin ligases, atrogin-1 and MuRF1. AJP: Endocrinol Metabol. 2004; 287(4)-601[DOI]
  • 36. Cross DA, Alessi DR, Cohen P, Andjelkovich M, Hemmings BA. Inhibition of glycogen synthase kinase-3 by insulin mediated by protein kinase B. Nature. 1995; 378(6559): 785-9[DOI][PubMed]
  • 37. van Weeren PC, de Bruyn KM, de Vries-Smits AM, van Lint J, Burgering BM. Essential role for protein kinase B (PKB) in insulin-induced glycogen synthase kinase 3 inactivation. Characterization of dominant-negative mutant of PKB. J Biol Chem. 1998; 273(21): 13150-6[PubMed]
  • 38. Latres E, Amini AR, Amini AA, Griffiths J, Martin FJ, Wei Y, et al. Insulin-like growth factor-1 (IGF-1) inversely regulates atrophy-induced genes via the phosphatidylinositol 3-kinase/Akt/mammalian target of rapamycin (PI3K/Akt/mTOR) pathway. J Biol Chem. 2005; 280(4): 2737-44[DOI][PubMed]
  • 39. Glass DJ. Skeletal muscle hypertrophy and atrophy signaling pathways. Int J Biochem Cell Biol. 2005; 37(10): 1974-84[DOI][PubMed]
  • 40. Schiaffino S, Mammucari C. Regulation of skeletal muscle growth by the IGF1-Akt/PKB pathway: insights from genetic models. Skeletal Muscle. 2011; 1(1): 4[DOI]
  • 41. Welsh GI, Miller CM, Loughlin AJ, Price NT, Proud CG. Regulation of eukaryotic initiation factor eIF2B: glycogen synthase kinase-3 phosphorylates a conserved serine which undergoes dephosphorylation in response to insulin. FEBS Letters. 1998; 421(2): 125-30[DOI]
  • 42. Rommel C, Bodine SC, Clarke BA, Rossman R, Nunez L, Stitt TN, et al. Mediation of IGF-1-induced skeletal myotube hypertrophy by PI(3)K/Akt/mTOR and PI(3)K/Akt/GSK3 pathways. Nat Cell Biol. 2001; 3(11): 1009-13[DOI][PubMed]
  • 43. Vivanco I, Sawyers CL. The phosphatidylinositol 3-Kinase AKT pathway in human cancer. Nat Rev Cancer. 2002; 2(7): 489-501[DOI][PubMed]
  • 44. Jones K, Wei C, Iakova P, Bugiardini E, Schneider-Gold C, Meola G, et al. GSK3beta mediates muscle pathology in myotonic dystrophy. J Clin Invest. 2012; 122(12): 4461-72[DOI][PubMed]
  • 45. Bertsch S, Lang CH, Vary TC. Inhibition of glycogen synthase kinase 3[beta] activity with lithium in vitro attenuates sepsis-induced changes in muscle protein turnover. Shock. 2011; 35(3): 266-74[DOI][PubMed]
  • 46. Leger B, Cartoni R, Praz M, Lamon S, Deriaz O, Crettenand A, et al. Akt signalling through GSK-3beta, mTOR and Foxo1 is involved in human skeletal muscle hypertrophy and atrophy. J Physiol. 2006; 576: 923-33[DOI][PubMed]
  • 47. Lee MH, Amin ND, Venkatesan A, Wang T, Tyagi R, Pant HC, et al. Impaired neurogenesis and neurite outgrowth in an HIV-gp120 transgenic model is reversed by exercise via BDNF production and Cdk5 regulation. J Neurovirol. 2013; 19(5): 418-31[DOI][PubMed]
Creative Commons License Except where otherwise noted, this work is licensed under Creative Commons Attribution Non Commercial 4.0 International License .

Search Relations:

Author(s):

Article(s):

Create Citiation Alert
via Google Reader

Readers' Comments