Iranian Red Crescent Medical Journal

Published by: Kowsar

Feature Extraction and Classification of Breast Tumors Using Chaos and Fractal Analysis on Dynamic Magnetic Resonance Imaging

Mahyar Nirouei 1 , Majid Pouladian 2 , * , Parviz Abdolmaleki 3 and Shahram Akhlaghpour 4
Authors Information
1 Department of Medical Radiation Engineering, Science and Research Branch, Islamic Azad University, Tehran, IR Iran
2 Department of Biomedical Engineering, Science and Research Branch, Islamic Azad University, Tehran, IR Iran
3 Department of Bio-Physics, Faculty of Science, Tarbiat Modares University, Tehran, IR Iran
4 Pardisnoor Medical Imaging Center, Tehran, IR Iran
Article information
  • Iranian Red Crescent Medical Journal: March 01, 2017, 19 (3); e41336
  • Published Online: November 26, 2016
  • Article Type: Research Article
  • Received: August 26, 2016
  • Revised: October 29, 2016
  • Accepted: November 14, 2016
  • DOI: 10.5812/ircmj.41336

To Cite: Nirouei M, Pouladian M, Abdolmaleki P, Akhlaghpour S. Feature Extraction and Classification of Breast Tumors Using Chaos and Fractal Analysis on Dynamic Magnetic Resonance Imaging, Iran Red Crescent Med J. 2017 ; 19(3):e41336. doi: 10.5812/ircmj.41336.

Abstract
Copyright © 2016, Iranian Red Crescent Medical Journal. This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-nc/4.0/) which permits copy and redistribute the material just in noncommercial usages, provided the original work is properly cited.
1. Background
2. Objectives
3. Methods
4. Results and Discussion
Footnotes
References
  • 1. Lucht RE, Knopp MV, Brix G. Classification of signal-time curves from dynamic MR mammography by neural networks. Magn Reson Imaging. 2001; 19(1): 51-7[PubMed]
  • 2. Collins DJ, Padhani AR. Dynamic magnetic resonance imaging of tumor perfusion. Approaches and biomedical challenges. IEEE Eng Med Biol Mag. 2004; 23(5): 65-83[PubMed]
  • 3. Texture analysis of lesion perfusion volumes in dynamic contrast-enhanced breast MRI. 2008 5th IEEE International Symposium on Biomedical Imaging: From Nano to Macro. : 1545-8
  • 4. Tambasco M, Magliocco AM. Relationship between tumor grade and computed architectural complexity in breast cancer specimens. Hum Pathol. 2008; 39(5): 740-6[DOI][PubMed]
  • 5. Dobrescu R, Ichim L, Crisan D. Diagnosis of breast cancer from mammograms by using fractal measures. Int J Med Imag. 2013; 1(2): 32-8
  • 6. Lopes R, Betrouni N. Fractal and multifractal analysis: a review. Med Image Anal. 2009; 13(4): 634-49[DOI][PubMed]
  • 7. Louridas GE, Louridas AG. Impact of chaos in the progression of heart failure. Int J Appl. 2012; 2(7)
  • 8. EtehadTavakol M, Ng EYK, Lucas C, Sadri S, Ataei M. Nonlinear analysis using Lyapunov exponents in breast thermograms to identify abnormal lesions. Infrared Phys Technol. 2012; 55(4): 345-52
  • 9. Abe T, Chen Y, Pham TD. Biomed Inform Technol. 2014; : 257-70
  • 10. Pham TD, Ichikawa K. Spatial chaos and complexity in the intracellular space of cancer and normal cells. Theor Biol Med Model. 2013; 10: 62[DOI][PubMed]
  • 11. Badas MG, Espa S, Fortini S, Querzoli G. 3D Finite Time Lyapunov Exponents in a left ventricle laboratory model. EPJ Web Conferences. 2015; 92
  • 12. Rangayyan RM, Nguyen TM. Fractal analysis of contours of breast masses in mammograms. J Digit Imaging. 2007; 20(3): 223-37[DOI][PubMed]
  • 13. Beheshti SM, AhmadiNoubari H, Fatemizadeh E, Khalili M. An efficient fractal method for detection and diagnosis of breast masses in mammograms. J Digit Imaging. 2014; 27(5): 661-9[DOI][PubMed]
  • 14. Pineda FD, Medved M, Fan X, Ivancevic MK, Abe H, Shimauchi A, et al. Comparison of dynamic contrast-enhanced MRI parameters of breast lesions at 1.5 and 3.0 T: a pilot study. Br J Radiol. 2015; 88(1049): 20150021
  • 15. Gordillo N, Montseny E, Sobrevilla P. State of the art survey on MRI brain tumor segmentation. Magn Reson Imaging. 2013; 31(8): 1426-38[DOI][PubMed]
  • 16. Ertas G, Doran SJ, Leach MO. A computerized volumetric segmentation method applicable to multi-centre MRI data to support computer-aided breast tissue analysis, density assessment and lesion localization. Med Biol Engineering Comput. 2016; : 1-12
  • 17. Takens F. Lecture Notes in Mathematics. 1981; : 366-81
  • 18. Rosenstein MT, Collins JJ, De Luca CJ. A practical method for calculating largest Lyapunov exponents from small data sets. Physica D Nonlinear Phenomena. 1993; 65: 117-34[DOI]
  • 19. Pazo D, Lopez JM, Politi A. Diverging Fluctuations of the Lyapunov Exponents. Phys Rev Lett. 2016; 117(3): 34101[DOI][PubMed]
  • 20. Ghayoumi Zadeh H, Haddadnia J, Montazeri A. A Model for Diagnosing Breast Cancerous Tissue from Thermal Images Using Active Contour and Lyapunov Exponent. Iran J Public Health. 2016; 45(5): 657-69[PubMed]
Creative Commons License Except where otherwise noted, this work is licensed under Creative Commons Attribution Non Commercial 4.0 International License .

Search Relations:

Author(s):

Article(s):

Create Citiation Alert
via Google Reader

Readers' Comments