Iranian Red Crescent Medical Journal

Published by: Kowsar

Functional Genetic Variants of FOXP3 and Risk of Multiple Sclerosis

Milad Gholami 1 , Hossein Darvish 2 , Habib Ahmadi 1 , Simin Rahimi-Aliabadi 1 , Babak Emamalizadeh 1 , Mohammad Reza Eslami Amirabadi 2 , Javad Jamshidi 3 and Abolfazl Movafagh 1 , *
Authors Information
1 Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, IR Iran
2 Behavioral Sciences Research Center, Shahid Beheshti University of Medical Sciences, Tehran, IR Iran
3 Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, IR Iran
Article information
  • Iranian Red Crescent Medical Journal: January 01, 2017, 19 (1); e34597
  • Published Online: May 31, 2016
  • Article Type: Research Article
  • Received: November 11, 2015
  • Revised: December 13, 2015
  • Accepted: January 5, 2016
  • DOI: 10.5812/ircmj.34597

To Cite: Gholami M, Darvish H, Ahmadi H, Rahimi-Aliabadi S, Emamalizadeh B, et al. Functional Genetic Variants of FOXP3 and Risk of Multiple Sclerosis, Iran Red Crescent Med J. 2017 ; 19(1):e34597. doi: 10.5812/ircmj.34597.

Copyright © 2016, Iranian Red Crescent Medical Journal. This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International License ( which permits copy and redistribute the material just in noncommercial usages, provided the original work is properly cited.
1. Background
2. Objectives
3. Patients and Methods
4. Results
5. Discussion
  • 1. Rosati G. The prevalence of multiple sclerosis in the world: an update. Neurological Sciences. 2001; 22(2): 117-39[DOI]
  • 2. Wingerchuk DM, Lucchinetti CF, Noseworthy JH. Multiple sclerosis: current pathophysiological concepts. Lab Invest. 2001; 81(3): 263-81[PubMed]
  • 3. Hauser SL, Goodin DS. 2001;
  • 4. Fernald GH, Yeh RF, Hauser SL, Oksenberg JR, Baranzini SE. Mapping gene activity in complex disorders: Integration of expression and genomic scans for multiple sclerosis. J Neuroimmunol. 2005; 167(1-2): 157-69[DOI][PubMed]
  • 5. Izadi S, Nikseresht A, Sharifian M, Sahraian MA, Hamidian Jahromi A, Aghighi M, et al. Significant increase in the prevalence of multiple sclerosis in iran in 2011. Iran J Med Sci. 2014; 39(2): 152-3[PubMed]
  • 6. Oksenberg JR, Barcellos LF. Multiple sclerosis genetics: leaving no stone unturned. Genes Immun. 2005; 6(5): 375-87[DOI][PubMed]
  • 7. Sugiyama H, Gyulai R, Toichi E, Garaczi E, Shimada S, Stevens SR, et al. Dysfunctional blood and target tissue CD4+CD25high regulatory T cells in psoriasis: mechanism underlying unrestrained pathogenic effector T cell proliferation. J Immunol. 2005; 174(1): 164-73[PubMed]
  • 8. Viglietta V, Baecher-Allan C, Weiner HL, Hafler DA. Loss of functional suppression by CD4+CD25+ regulatory T cells in patients with multiple sclerosis. J Exp Med. 2004; 199(7): 971-9[DOI][PubMed]
  • 9. Lindley S, Dayan CM, Bishop A, Roep BO, Peakman M, Tree TI. Defective suppressor function in CD4(+)CD25(+) T-cells from patients with type 1 diabetes. Diabetes. 2005; 54(1): 92-9[PubMed]
  • 10. Hori S, Nomura T, Sakaguchi S. Control of regulatory T cell development by the transcription factor Foxp3. Science. 2003; 299(5609): 1057-61[DOI][PubMed]
  • 11. Yagi H, Nomura T, Nakamura K, Yamazaki S, Kitawaki T, Hori S, et al. Crucial role of FOXP3 in the development and function of human CD25+CD4+ regulatory T cells. Int Immunol. 2004; 16(11): 1643-56[DOI][PubMed]
  • 12. Wu Y, Borde M, Heissmeyer V, Feuerer M, Lapan AD, Stroud JC, et al. FOXP3 controls regulatory T cell function through cooperation with NFAT. Cell. 2006; 126(2): 375-87[DOI][PubMed]
  • 13. Okumura A, Ishikawa T, Sato S, Yamauchi T, Oshima H, Ohashi T, et al. Deficiency of forkhead box P3 and cytotoxic T-lymphocyte-associated antigen-4 gene expressions and impaired suppressor function of CD4(+)CD25(+) T cells in patients with autoimmune hepatitis. Hepatol Res. 2008; 38(9): 896-903[DOI][PubMed]
  • 14. Sakaguchi S, Wing K, Miyara M. Regulatory T cells - a brief history and perspective. Eur J Immunol. 2007; 37 Suppl 1-23[DOI][PubMed]
  • 15. Fontenot JD, Rasmussen JP, Williams LM, Dooley JL, Farr AG, Rudensky AY. Regulatory T cell lineage specification by the forkhead transcription factor foxp3. Immunity. 2005; 22(3): 329-41[DOI][PubMed]
  • 16. Santner-Nanan B, Peek MJ, Khanam R, Richarts L, Zhu E, Fazekas de St Groth B, et al. Systemic increase in the ratio between Foxp3+ and IL-17-producing CD4+ T cells in healthy pregnancy but not in preeclampsia. J Immunol. 2009; 183(11): 7023-30[DOI][PubMed]
  • 17. Quinn KH, Lacoursiere DY, Cui L, Bui J, Parast MM. The unique pathophysiology of early-onset severe preeclampsia: role of decidual T regulatory cells. J Reprod Immunol. 2011; 91(1-2): 76-82[DOI][PubMed]
  • 18. McDonald WI, Compston A, Edan G, Goodkin D, Hartung HP, Lublin FD, et al. Recommended diagnostic criteria for multiple sclerosis: guidelines from the International Panel on the diagnosis of multiple sclerosis. Ann Neurol. 2001; 50(1): 121-7[PubMed]
  • 19. Naing L, Winn T, Rusli BN. Practical issues in calculating the sample size for prevalence studies. Arch orofacial Sci. 2006; 1(1): 9-14
  • 20. Marson A, Kretschmer K, Frampton GM, Jacobsen ES, Polansky JK, MacIsaac KD, et al. Foxp3 occupancy and regulation of key target genes during T-cell stimulation. Nature. 2007; 445(7130): 931-5[DOI][PubMed]
  • 21. Zheng Y, Josefowicz SZ, Kas A, Chu TT, Gavin MA, Rudensky AY. Genome-wide analysis of Foxp3 target genes in developing and mature regulatory T cells. Nature. 2007; 445(7130): 936-40[DOI][PubMed]
  • 22. Bilate AM, Lafaille JJ. Induced CD4+Foxp3+ regulatory T cells in immune tolerance. Annu Rev Immunol. 2012; 30: 733-58[DOI][PubMed]
  • 23. Rowe JH, Ertelt JM, Way SS. Foxp3(+) regulatory T cells, immune stimulation and host defence against infection. Immunology. 2012; 136(1): 1-10[DOI][PubMed]
  • 24. Wildin RS, Smyk-Pearson S, Filipovich AH. Clinical and molecular features of the immunodysregulation, polyendocrinopathy, enteropathy, X linked (IPEX) syndrome. J Med Genet. 2002; 39(8): 537-45[PubMed]
  • 25. Oda JM, Hirata BK, Guembarovski RL, Watanabe MA. Genetic polymorphism in FOXP3 gene: imbalance in regulatory T-cell role and development of human diseases. J Genet. 2013; 92(1): 163-71[PubMed]
  • 26. Wu Z, You Z, Zhang C, Li Z, Su X, Zhang X, et al. Association between functional polymorphisms of Foxp3 gene and the occurrence of unexplained recurrent spontaneous abortion in a Chinese Han population. Clin Dev Immunol. 2012; 2012: 896458[DOI][PubMed]
  • 27. Holm B, Lindholm E, Lynch K, Bakhatadze E, Arvastsson J, Lernmark A, et al. Su. 27. Association of Foxp3 Polymorphism with Gad65 Autoantibodies in Type 1 Diabetes. Clin Immunol. 2006; 119: 169
  • 28. Song P, Wang XW, Li HX, Li K, Liu L, Wei C, et al. Association between FOXP3 polymorphisms and vitiligo in a Han Chinese population. Br J Dermatol. 2013; 169(3): 571-8[DOI][PubMed]
  • 29. Jafarzadeh A, Jamali M, Mahdavi R, Ebrahimi HA, Hajghani H, Khosravimashizi A, et al. Circulating levels of interleukin-35 in patients with multiple sclerosis: evaluation of the influences of FOXP3 gene polymorphism and treatment program. J Mol Neurosci. 2015; 55(4): 891-7[DOI][PubMed]
  • 30. Jahan P, Sreenivasagari R, Goudi D, Komaravalli PL, Ishaq M. Role of Foxp3 gene in maternal susceptibility to pre-eclampsia - a study from South India. Scand J Immunol. 2013; 77(2): 104-8[DOI][PubMed]
  • 31. D'Amico F, Skarmoutsou E, Marchini M, Malaponte G, Caronni M, Scorza R, et al. Genetic polymorphisms of FOXP3 in Italian patients with systemic sclerosis. Immunol Lett. 2013; 152(2): 109-13[DOI][PubMed]
  • 32. Wang Y, Souabni A, Flavell RA, Wan YY. An intrinsic mechanism predisposes Foxp3-expressing regulatory T cells to Th2 conversion in vivo. J Immunol. 2010; 185(10): 5983-92[DOI][PubMed]
Creative Commons License Except where otherwise noted, this work is licensed under Creative Commons Attribution Non Commercial 4.0 International License .

Search Relations:



Create Citiation Alert
via Google Reader

Readers' Comments