Iranian Red Crescent Medical Journal

Published by: Kowsar

Assessment of the Importance of a New Risk Factor in Prediction Models

Mohammad Reza Baneshi 1 , Ehsan Mosa Farkhani 2 and Saiedeh Haji-Maghsoudi 3 , *
Authors Information
1 Research Center for Modeling in Health, Institute for Futures Studies in Health, Kerman University of Medical Sciences, Kerman, IR Iran
2 Department of Epidemiology, University of Tehran, Tehran, IR Iran
3 Department of Biostatistics & Epidemiology, School of Public Health, Hamadan University of Medical Sciences, Hamadan, IR Iran
Article information
  • Iranian Red Crescent Medical Journal: February 01, 2016, 18 (2); e20949
  • Published Online: February 6, 2015
  • Article Type: Research Article
  • Received: June 15, 2014
  • Revised: September 3, 2014
  • Accepted: September 28, 2014
  • DOI: 10.5812/ircmj.20949

To Cite: Baneshi M R, Mosa Farkhani E, Haji-Maghsoudi S. Assessment of the Importance of a New Risk Factor in Prediction Models, Iran Red Crescent Med J. 2016 ; 18(2):e20949. doi: 10.5812/ircmj.20949.

Abstract
Copyright © 2015, Iranian Red Crescent Medical Journal. This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-nc/4.0/) which permits copy and redistribute the material just in noncommercial usages, provided the original work is properly cited.
1. Background
2. Objectives
3. Patients and Methods
4. Results
5. Discussion
Acknowledgements
Footnote
References
  • 1. Pencina MJ, D'Agostino RB, D'Agostino RB, Vasan RS. Evaluating the added predictive ability of a new marker: from area under the ROC curve to reclassification and beyond. Stat Med. 2008; 27(2): 157-72[DOI][PubMed]
  • 2. Moons KG, Kengne AP, Woodward M, Royston P, Vergouwe Y, Altman DG, et al. Risk prediction models: I. Development, internal validation, and assessing the incremental value of a new (bio)marker. Heart. 2012; 98(9): 683-90[DOI][PubMed]
  • 3. Pencina MJ, D'Agostino RB, Steyerberg EW. Extensions of net reclassification improvement calculations to measure usefulness of new biomarkers. Stat Med. 2011; 30(1): 11-21[DOI][PubMed]
  • 4. Hoyt WT, Leierer S, Millington MJ. Analysis and Interpretation of Findings Using Multiple Regression Techniques. Rehabil Couns Bull. 2006; 49(4): 223-33[DOI]
  • 5. Mac Nally R. Multiple regression and inference in ecology and conservation biology: further comments on identifying important predictor variables. Biodivers Conserv. 2002; 11(8): 1397-401[DOI]
  • 6. Nathans LL, Oswald FL, Nimon K. Interpreting multiple linear regression: A guidebook of variable importance. 2012; 17(9)
  • 7. Sauerbrei W, Royston P, Look M. A new proposal for multivariable modelling of time-varying effects in survival data based on fractional polynomial time-transformation. Biom J. 2007; 49(3): 453-73[DOI][PubMed]
  • 8. Sauerbrei W, Royston P, Binder H. Selection of important variables and determination of functional form for continuous predictors in multivariable model building. Stat Med. 2007; 26(30): 5512-28[DOI][PubMed]
  • 9. Levy AR, Tamblyn RM, Fitchett D, McLeod PJ, Hanley JA. Coding accuracy of hospital discharge data for elderly survivors of myocardial infarction. Can J Cardiol. 1999; 15(11): 1277-82[PubMed]
  • 10. Farkhani EM, Baneshi MR, Zolala F. Survival Rate And Its Related Factors In Patients With Acute Myocardial Infarction. Med J Mashhad Univ Med Sci. 2014; 57(4): 636-46
  • 11. Justice AC, Covinsky KE, Berlin JA. Assessing the generalizability of prognostic information. Ann Intern Med. 1999; 130(6): 515-24[PubMed]
  • 12. Harrell FE, Lee KL, Mark DB. Multivariable Prognostic Models: Issues in Developing Models, Evaluating Assumptions and Adequacy, and Measuring and Reducing Errors. Stat Med. 1996; 15(4): 361-87[DOI]
  • 13. Pencina MJ, D'Agostino RB. Overall C as a measure of discrimination in survival analysis: model specific population value and confidence interval estimation. Stat Med. 2004; 23(13): 2109-23[DOI][PubMed]
  • 14. Cook NR. Use and misuse of the receiver operating characteristic curve in risk prediction. Circulation. 2007; 115(7): 928-35[DOI][PubMed]
  • 15. Harrell FE. Regression modeling strategies: with applications to linear models, logistic regression, and survival analysis. 2001;
  • 16. Cook NR. Statistical evaluation of prognostic versus diagnostic models: beyond the ROC curve. Clin Chem. 2008; 54(1): 17-23[DOI][PubMed]
  • 17. Greenland P, O'Malley PG. When is a new prediction marker useful? A consideration of lipoprotein-associated phospholipase A2 and C-reactive protein for stroke risk. Arch Intern Med. 2005; 165(21): 2454-6[DOI][PubMed]
  • 18. Pepe MS, Janes H, Longton G, Leisenring W, Newcomb P. Limitations of the odds ratio in gauging the performance of a diagnostic, prognostic, or screening marker. Am J Epidemiol. 2004; 159(9): 882-90[PubMed]
  • 19. Ware JH. The limitations of risk factors as prognostic tools. N Engl J Med. 2006; 355(25): 2615-7[DOI][PubMed]
  • 20. Wang TJ, Gona P, Larson MG, Tofler GH, Levy D, Newton-Cheh C, et al. Multiple biomarkers for the prediction of first major cardiovascular events and death. N Engl J Med. 2006; 355(25): 2631-9[DOI][PubMed]
  • 21. Uno H, Tian L, Cai T, Kohane IS, Wei LJ. Comparing risk scoring systems beyond the ROC paradigm in survival analysis. Harvard Univ Biostatistics Work Pap Ser. 2009;
  • 22. Meigs JB, Shrader P, Sullivan LM, McAteer JB, Fox CS, Dupuis J, et al. Genotype score in addition to common risk factors for prediction of type 2 diabetes. N Engl J Med. 2008; 359(21): 2208-19[DOI][PubMed]
Creative Commons License Except where otherwise noted, this work is licensed under Creative Commons Attribution Non Commercial 4.0 International License .

Search Relations:

Author(s):

Article(s):

Create Citiation Alert
via Google Reader

Readers' Comments