To Cite:
Baneshi
M R, Mosa Farkhani
E, Haji-Maghsoudi
S. Assessment of the Importance of a New Risk Factor in Prediction Models,
Iran Red Crescent Med J.
2016
; 18(2):e20949.
doi: 10.5812/ircmj.20949.
1.
Pencina MJ, D'Agostino RB, D'Agostino RB, Vasan RS. Evaluating the added predictive ability of a new marker: from area under the ROC curve to reclassification and beyond. Stat Med. 2008; 27(2): 157-72[DOI][PubMed]
2.
Moons KG,
Kengne AP,
Woodward M,
Royston P,
Vergouwe Y,
Altman DG,
et al.
Risk prediction models: I. Development, internal validation, and assessing the incremental value of a new (bio)marker. Heart. 2012; 98(9): 683-90[DOI][PubMed]
3.
Pencina MJ, D'Agostino RB, Steyerberg EW. Extensions of net reclassification improvement calculations to measure usefulness of new biomarkers. Stat Med. 2011; 30(1): 11-21[DOI][PubMed]
4.
Hoyt WT, Leierer S, Millington MJ. Analysis and Interpretation of Findings Using Multiple Regression Techniques. Rehabil Couns Bull. 2006; 49(4): 223-33[DOI]
5.
Mac Nally R. Multiple regression and inference in ecology and conservation biology: further comments on identifying important predictor variables. Biodivers Conserv. 2002; 11(8): 1397-401[DOI]
6.
Nathans LL, Oswald FL, Nimon K. Interpreting multiple linear regression: A guidebook of variable importance. 2012; 17(9)
7.
Sauerbrei W, Royston P, Look M. A new proposal for multivariable modelling of time-varying effects in survival data based on fractional polynomial time-transformation. Biom J. 2007; 49(3): 453-73[DOI][PubMed]
8.
Sauerbrei W, Royston P, Binder H. Selection of important variables and determination of functional form for continuous predictors in multivariable model building. Stat Med. 2007; 26(30): 5512-28[DOI][PubMed]
9.
Levy AR, Tamblyn RM, Fitchett D, McLeod PJ, Hanley JA. Coding accuracy of hospital discharge data for elderly survivors of myocardial infarction. Can J Cardiol. 1999; 15(11): 1277-82[PubMed]
10.
Farkhani EM, Baneshi MR, Zolala F. Survival Rate And Its Related Factors In Patients With Acute Myocardial Infarction. Med J Mashhad Univ Med Sci. 2014; 57(4): 636-46
11.
Justice AC, Covinsky KE, Berlin JA. Assessing the generalizability of prognostic information. Ann Intern Med. 1999; 130(6): 515-24[PubMed]
12.
Harrell FE, Lee KL, Mark DB. Multivariable Prognostic Models: Issues in Developing Models, Evaluating Assumptions and Adequacy, and Measuring and Reducing Errors. Stat Med. 1996; 15(4): 361-87[DOI]
13.
Pencina MJ, D'Agostino RB. Overall C as a measure of discrimination in survival analysis: model specific population value and confidence interval estimation. Stat Med. 2004; 23(13): 2109-23[DOI][PubMed]
14.
Cook NR. Use and misuse of the receiver operating characteristic curve in risk prediction. Circulation. 2007; 115(7): 928-35[DOI][PubMed]
15.
Harrell FE. Regression modeling strategies: with applications to linear models, logistic regression, and survival analysis. 2001;
16.
Cook NR. Statistical evaluation of prognostic versus diagnostic models: beyond the ROC curve. Clin Chem. 2008; 54(1): 17-23[DOI][PubMed]
17.
Greenland P, O'Malley PG. When is a new prediction marker useful? A consideration of lipoprotein-associated phospholipase A2 and C-reactive protein for stroke risk. Arch Intern Med. 2005; 165(21): 2454-6[DOI][PubMed]
18.
Pepe MS, Janes H, Longton G, Leisenring W, Newcomb P. Limitations of the odds ratio in gauging the performance of a diagnostic, prognostic, or screening marker. Am J Epidemiol. 2004; 159(9): 882-90[PubMed]
19.
Ware JH. The limitations of risk factors as prognostic tools. N Engl J Med. 2006; 355(25): 2615-7[DOI][PubMed]
20.
Wang TJ,
Gona P,
Larson MG,
Tofler GH,
Levy D,
Newton-Cheh C,
et al.
Multiple biomarkers for the prediction of first major cardiovascular events and death. N Engl J Med. 2006; 355(25): 2631-9[DOI][PubMed]
21.
Uno H, Tian L, Cai T, Kohane IS, Wei LJ. Comparing risk scoring systems beyond the ROC paradigm in survival analysis. Harvard Univ Biostatistics Work Pap Ser. 2009;
22.
Meigs JB,
Shrader P,
Sullivan LM,
McAteer JB,
Fox CS,
Dupuis J,
et al.
Genotype score in addition to common risk factors for prediction of type 2 diabetes. N Engl J Med. 2008; 359(21): 2208-19[DOI][PubMed]
Readers' Comments