Iranian Red Crescent Medical Journal

Published by: Kowsar

Effects of Vitamin D and Calcium Supplementation on Micro-architectural and Densitometric Changes of Rat Femur in a Microgravity Simulator Model

Marjan Kouhnavard 1 , 2 , Ensieh Nasli Esfahani 1 , 2 , Mohammad Montazeri 3 , Seyed Jafar Hashemian 1 , 2 , * , Mitra Mehrazma 4 , Bagher Larijani 2 , Amir Nezami Asl 5 , Amir Khoshvaghti 5 , Ammar Falsafi 1 , Komeil Lalehfar 1 , Keyvan Malekpour 1 and Mehran Vosugh 1
Authors Information
1 Diabetes Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences , Tehran, IR Iran
2 Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Research Institute, Tehran University of Medical Sciences, Tehran , IR Iran
3 Young Researchers Club, Babol Branch, Babol, IR Iran
4 Oncopathology Research Center, Iran University of Medical Sciences, Tehran, IR Iran
5 Aerospace and Subaquatic Medicine Faculty, AJA University of Medical Sciences, Tehran, IR Iran
Article information
  • Iranian Red Crescent Medical Journal: June 5, 2014, 16 (6); e18026
  • Published Online: June 5, 2014
  • Article Type: Research Article
  • Received: February 4, 2014
  • Revised: March 6, 2014
  • Accepted: April 7, 2014
  • DOI: 10.5812/ircmj.18026

To Cite: Kouhnavard M, Nasli Esfahani E, Montazeri M, Hashemian S J, Mehrazma M, et al. Effects of Vitamin D and Calcium Supplementation on Micro-architectural and Densitometric Changes of Rat Femur in a Microgravity Simulator Model, Iran Red Crescent Med J. 2014 ; 16(6):e18026. doi: 10.5812/ircmj.18026.

Copyright © 2014, Iranian Red Crescent Medical Journal. This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International License ( which permits copy and redistribute the material just in noncommercial usages, provided the original work is properly cited.
1. Background
2. Objectives
3. Materials and Methods
4. Results
5. Discussion
  • 1. Lang T, LeBlanc A, Evans H, Lu Y, Genant H, Yu A. Cortical and trabecular bone mineral loss from the spine and hip in long-duration spaceflight. J Bone Miner Res. 2004; 19(6): 1006-12[DOI][PubMed]
  • 2. Sibonga JD, Cavanagh PR, Lang TF, LeBlanc AD, Schneider VS, Shackelford LC, et al. Adaptation of the Skeletal System During Long-Duration Spaceflight. J Bone Miner Metab . 2008; 5(4): 249-61[DOI]
  • 3. Bu G, Shuang F, Wu Y, Ren D, Hou S. AQP9: a novel target for bone loss induced by microgravity. Biochem Biophys Res Commun. 2012; 419(4): 774-8[DOI][PubMed]
  • 4. Smith SM, Zwart SR. Nutritional biochemistry of spaceflight. Adv Clin Chem. 2008; 46: 87-130[DOI]
  • 5. Ferrari S. [Vitamine D in patients with osteoporosis: sufficient or necessary?]. Rev Med Suisse. 2007; 3(115): 1515-6[PubMed]
  • 6. Smith SM, Zwart SR, Block G, Rice BL, Davis-Street JE. The nutritional status of astronauts is altered after long-term space flight aboard the International Space Station. J Nutr. 2005; 135(3): 437-43[PubMed]
  • 7. Smith SM, Wastney ME, O'Brien KO, Morukov BV, Larina IM, Abrams SA, et al. Bone markers, calcium metabolism, and calcium kinetics during extended-duration space flight on the mir space station. J Bone Miner Res. 2005; 20(2): 208-18[DOI][PubMed]
  • 8. Cavanagh PR, Licata AA, Rice AJ. Exercise and pharmacological countermeasures for bone loss during long-duration space flight. Gravitational and space biology bulletin. ASGSR 2005; 18(2): 39-58
  • 9. Smith SM, Heer M. Calcium and bone metabolism during space flight. Nutrition. 2002; 18(10): 849-52[DOI]
  • 10. Alexandre C, Vico L. Pathophysiology of bone loss in disuse osteoporosis. Joint Bone Spine. 2011; 78(6): 572-6[DOI][PubMed]
  • 11. Zerwekh JE, Ruml LA, Gottschalk F, Pak CY. The effects of twelve weeks of bed rest on bone histology, biochemical markers of bone turnover, and calcium homeostasis in eleven normal subjects. J Bone Miner Res. 1998; 13(10): 1594-601[DOI][PubMed]
  • 12. Smith SM, Wastney ME, Morukov BV, Larina IM, Nyquist LE, Abrams SA, et al. Calcium metabolism before, during, and after a 3-mo spaceflight: kinetic and biochemical changes. Am J Physiol. 1999; 277(1 Pt 2)-10[PubMed]
  • 13. Montazeri M, Hashemian SJ, Khoshvaghti A. Design and construction of a Microgravity Simulator Model for space flight researches. The 2nd National Aerospace and Subaquatic Medicine Congress. 2012; : 128
  • 14. Morey-Holton ER, Globus RK. Hindlimb unloading rodent model: technical aspects. J Appl Physiol (1985). 2002; 92(4): 1367-77[DOI][PubMed]
  • 15. Katikaneni R, Ponnapakkam A, Miller E, Ponnapakkam T, Gensure RC. A new technique for precisely and accurately measuring lumbar spine bone mineral density in mice using clinical dual energy X-ray absorptiometry (DXA). Toxicol Mech Methods. 2009; 19(3): 225-31[DOI][PubMed]
  • 16. Surve VV, Andersson N, Lehto-Axtelius D, Hakanson R. Comparison of osteopenia after gastrectomy, ovariectomy and prednisolone treatment in the young female rat. Acta Orthop Scand. 2001; 72(5): 525-32[DOI][PubMed]
  • 17. Takano-Yamamoto T, Rodan GA. Direct effects of 17 beta-estradiol on trabecular bone in ovariectomized rats. PNAS. 1990; 87(6): 2172-6[DOI]
  • 18. Amling M, Priemel M, Holzmann T, Chapin K, Rueger JM, Baron R, et al. Rescue of the skeletal phenotype of vitamin D receptor-ablated mice in the setting of normal mineral ion homeostasis: formal histomorphometric and biomechanical analyses. Endocrinology. 1999; 140(11): 4982-7[DOI][PubMed]
  • 19. Caillot-Augusseau A, Lafage-Proust MH, Margaillan P, Vergely N, Faure S, Paillet S, et al. Weight gain reverses bone turnover and restores circadian variation of bone resorption in anorexic patients. Clin Endocrinol (Oxf). 2000; 52(1): 113-21[PubMed]
  • 20. Iwamoto J, Takeda T, Sato Y. Interventions to prevent bone loss in astronauts during space flight. Keio J Med. 2005; 54(2): 55-9[PubMed]
  • 21. Navidi M, Wolinsky I, Fung P, Arnaud SB. Effect of excess dietary salt on calcium metabolism and bone mineral in a spaceflight rat model. J Appl Physiol (1985). 1995; 78(1): 70-5[PubMed]
  • 22. O'Loughlin PD, Morris HA. Oophorectomy acutely increases calcium excretion in adult rats. J Nutr. 2003; 133(7): 2277-80[PubMed]
  • 23. Mitchell DY, Eusebio RA, Dunlap LE, Pallone KA, Nesbitt JD, Russell DA, et al. Risedronate gastrointestinal absorption is independent of site and rate of administration. Pharm Res. 1998; 15(2): 228-32[PubMed]
  • 24. Amblard D, Lafage-Proust MH, Laib A, Thomas T, Ruegsegger P, Alexandre C, et al. Tail suspension induces bone loss in skeletally mature mice in the C57BL/6J strain but not in the C3H/HeJ strain. J Bone Miner Res. 2003; 18(3): 561-9[DOI][PubMed]
  • 25. Shen V, Birchman R, Xu R, Lindsay R, Dempster DW. Short-term changes in histomorphometric and biochemical turnover markers and bone mineral density in estrogen- and/or dietary calcium-deficient rats. Bone. 1995; 16(1): 149-56[DOI]
  • 26. Halloran BP, Bikle DD, Harris J, Foskett HC, Morey-Holton E. Skeletal unloading decreases production of 1,25-dihydroxyvitamin D. Am J Physiol. 1993; 264(5 Pt 1)-6[PubMed]
  • 27. Brandi L. 1alpha(OH)D3 One-alpha-hydroxy-cholecalciferol--an active vitamin D analog. Clinical studies on prophylaxis and treatment of secondary hyperparathyroidism in uremic patients on chronic dialysis. Dan Med Bull. 2008; 55(4): 186-210[PubMed]
  • 28. Jackson RD, LaCroix AZ, Gass M, Wallace RB, Robbins J, Lewis CE, et al. Calcium plus vitamin D supplementation and the risk of fractures. N Engl J Med. 2006; 354(7): 669-83[DOI][PubMed]
  • 29. Tang BMP, Eslick GD, Nowson C, Smith C, Bensoussan A. Use of calcium or calcium in combination with vitamin D supplementation to prevent fractures and bone loss in people aged 50 years and older: a meta-analysis. Lancet. 2007; 370(9588): 657-66[DOI]
  • 30. Kumei Y, Shimokawa H, Katano H, Hara E, Akiyama H, Hirano M, et al. Microgravity induces prostaglandin E2 and interleukin-6 production in normal rat osteoblasts: role in bone demineralization. IJBT. 1996; 47(2-3): 313-24[DOI]
  • 31. Ziambaras K, Civitelli R, Papavasiliou S. Weightlessness and skeleton homeostasis. Hormones. 2005; 4(1): 18-27[DOI]
  • 32. Globus RK, Bikle DD, Halloran B, Morey-Holton E. Skeletal response to dietary calcium in a rat model simulating weightlessness. J Bone Miner Res. 1986; 1(2): 191-7[DOI][PubMed]
  • 33. Zittermann A, Heer M, Caillot-Augusso A, Rettberg P, Scheld K, Drummer C, et al. Microgravity inhibits intestinal calcium absorption as shown by a stable strontium test. Eur J Clin Invest. 2000; 30(12): 1036-43[PubMed]
  • 34. Holick MF. Perspective on the Impact of Weightlessness on Calcium and Bone Metabolism. Bone. 1998; 22(5): 105S-11S[DOI]
  • 35. Caillot-Augusseau A, Vico L, Heer M, Voroviev D, Souberbielle JC, Zitterman A, et al. Space flight is associated with rapid decreases of undercarboxylated osteocalcin and increases of markers of bone resorption without changes in their circadian variation: observations in two cosmonauts. Clin Chem. 2000; 46(8 Pt 1): 1136-43[PubMed]
Creative Commons License Except where otherwise noted, this work is licensed under Creative Commons Attribution Non Commercial 4.0 International License .

Search Relations:



Create Citiation Alert
via Google Reader

Readers' Comments