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Abstract

Background: Ovarian Cancer is one of the most fatal female neoplasms associated with high mortality. Finding of the new mecha-
nisms involved in the development of ovarian cancer will help us to better diagnosis and effective treatment.
Objectives: The current bioinformatics study aimed at investigating the relationship between messenger RNA (mRNA) and long
non-coding RNA (lncRNA) in ovarian cancer through the LncRNAs2Pathways method.
Methods: The genome-wide lncRNA and mRNA data obtained from 185 ovarian cancer and healthy control samples originated from
Michigan Medical School were downloaded and pretreated from European bioinformatics institute (EMBL-EBI) database. The inter-
actions between miRNA and mRNA, and the intersections between lncRNA and miRNA were identified with starBase version 2.0. A
long non-coding RNA-mediated ceRNA network (LMCN) was constructed by integrating lncRNA-mRNA and lncRNA-mRNA intersec-
tions. Then, the lncRNAs were mapped to the network, and these lncRNAs were regarded as source nodes, and the random walk with
restart (RWR) algorithm was also applied to evaluate the effect of source nodes on protein-coding genes. Finally, the Kolmogorov-
Smirnov-like statistics weighted by the propagation score was used to evaluate the enrichment value of each functional pathway.
Results: After preliminary screening, the gene expression profile including 12,437 genes was obtained. The LMCN network includ-
ing 11 lncRNA and 367 mRNA were identified. A total of 11 differentially expressed lncRNAs between the normal and ovarian cancer
samples by the LCMN network were identified. The LncRNAs2Pathways screened six functional pathways (P < 0.05) coregulated by
lncRNAs related to ovarian cancer.
Conclusions: A total of six functional pathways related to lncRNA and mRNA interactions in ovarian cancer were identified. This
finding is beneficial for effective diagnosis of patients with ovarian cancer, and also provides a new insight into the treatment of
this disease.
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1. Background

Ovarian cancer is one of the most fatal female cancers
that can cause high mortality worldwide (1). If the tumor is
diagnosed early, the five-year survival rate can exceed 80%.
However, delayed diagnose often happens since the tumor
cells may have already spread into the peritoneal cavity.
Thus, the five-year reported survival rate is usually less than
40% (2). Therefore, it is necessary to understand the new
mechanisms involved in the development of ovarian can-
cer for better diagnosis and effective treatment of this dis-
ease.

Long non-coding RNAs (lncRNAs) consist of more than
200 nucleotides and are involved in a wide range of biolog-
ical processes (3, 4) such as gene expression, cell differenti-

ation, immune response, and epigenetic regulation (5-8).
Recently, more and more evidence shows that the lncRNAs
play an important role in the pathology of cancer diseases
(9). For example, the lncRNA overexpression is correlated
with ovarian (10), breast (11), cervical (12), hepatocellular
(13), and other tumor cells. Several lncRNAs play important
roles in the development of ovarian cancer. For instance,
human ovarian cancer-specific transcript 2 (HOST2) regu-
lates biological behaviors of ovarian cancer through inhi-
bition of let-7b functions (14). HOX transcript antisense
RNA (HOTAIR) promotes proliferation, migration, and in-
vasion as a competing endogenous RNA (ceRNA) in ovar-
ian cells (15); whereas neuroblastoma associated transcript
1 (NBAT-1) could inhibit the development of ovarian cancer

Copyright © 2018, Author(s). This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International License
(http://creativecommons.org/licenses/by-nc/4.0/) which permits copy and redistribute the material just in noncommercial usages, provided the original work is properly
cited

http://ircmj.com
http://dx.doi.org/10.5812/ircmj.65103
https://crossmark.crossref.org/dialog/?doi=10.5812/ircmj.65103&domain=pdf


Qu L et al.

and suppress tumorigenesis (16). However, all these stud-
ies just focused on the association between ovarian cancer
and lncRNA alone, but the coregulation of lncRNA might
play a key role in the development of ovarian cancer.

Recently, the potential coregulated disease-lncRNA as-
sociations are predicted by several methods. Jiang et al.
(17) developed the lncRNA2Function to investigate the as-
sociation between protein-coding genes and the lncRNAs
and then, performed a hypergeometric test to function-
ally annotate lncRNAs. Zhao et al. (18) introduced a web-
based computational tool, named co-lncRNA, for enrich-
ment analysis of lncRNAs in Gene Ontology (GO) and Ky-
oto encyclopedia of genes and genomes (KEGG) pathways.
Recently, Han et al. (19) developed an LncRNAs2Pathways
to identify the key functional pathways related to differ-
ential expressed lncRNAs between patients with glioma,
prostate, and pancreatic cancers, and normal controls
based on RWR algorithm. They proved that the LncR-
NAs2Pathways is effective not to identify function predic-
tor for lncRNA sets, and can provide a combinatorial effect
of lncRNA in pancreatic cancers.

The current study cited the algorithm reported by Han
et al. (19) to verify the effect of this method to identify key
functional pathways related to ovarian cancer and investi-
gate their coregulation. The current study results help to
identify the coregulated effect of functional pathways on
ovarian cancer, which provides a new insight ino the treat-
ment of this disease.

2. Methods

2.1. Data Extraction

In the current bioinformatics study, the genome-wide
lncRNA and mRNA data were derived from a recent study
published in Journal of Buon (20), which included sam-
ples from Michigan Medical School. The data of expres-
sion profile were collected from 185 patients with ovarian
cancer and 10 age- and gender-matched healthy control
subjects in the EMBL-EBI database (https://www.ebi.ac.uk/).
These microarray datasets were extracted under acces-
sion number E-GEOD-26712, existed on A-AFFY-33-Affymetrix
GeneChip Human Genome HG-U133A [HG-U133A]. After
background correction and data standardization by the
robust multichip average method to eliminate the in-
fluence of nonspecific hybridization, the expression val-
ues of lncRNA/mRNA were evaluated by summarizing the
background-corrected intensity of the probes mapped to
this gene. The gene expression profile was obtained.

The interactions between miRNA and mRNA (n =
423,975), and the intersections between lncRNA and
miRNA (n = 10,212) were identified with starBase version
2.0 (21).

All genes in the expression profile were intersected
with mRNA from the miRNA-mRNA and lncRNA from the
lncRNA-miRNA intersections, respectively. As a result, a
new gene profile was obtained.

To obtain new miRNA-mRNA and lncRNA-miRNA inter-
sections, the mRNA and lncRNA in the new profile were
again intersected with those of the miRNA-mRNA and
lncRNA-miRNA intersections, respectively.

2.2. Identification of miRNA-mediated ceRNA Regulatory Net-
works

To construct the long non-coding RNA-mediated ceRNA
network (LMCN), first the enrichment of miRNAs related
to both lncRNA and mRNA was assessed by hypergeomet-
ric test Formula 1. Where N is the total number of miRNAs,
K and M indicate the numbers of miRNAs associated with
the current lncRNA and mRNA, respectively, and x repre-
sents the common miRNA number shared by the lncRNA
and mRNA (22).

(1)P=1-
∑x
t =0

(
K

0ptt

)(
N−K

0ptM−t

)
(

N
0ptM

)
Then, the Pearson correlation coefficient of the interac-

tions was calculated and transformed to Z by the following
Formula 2:

(2)Z=0.5 [ln (1 + r)− ln (1− r)]

Finally, all the lncRNA-mRNA interaction pairs with |z|
> 0.7 were screened to construct LMCN. The nodes of com-
petitive lncRNA in LMCN network were regarded as the
source nodes.

2.3. Evaluation of the Effect of lncRNAs on Protein-Coding Genes

The current study cited the RWR algorithm to priori-
tize the protein-coding genes related to lncRNAs as follows:

(3)pˆt+1=(1− r)Mpt + rp0

where M is the column-normalized adjacency matrix
of the LMCN network, pt is the node vector at the time
step t, and p0 is the initial probability vector of nodes.
Each walker has the same probability to begin from each
source node. The r parameter is a probability for walk in
every time step at the source nodes, which was set at 0.7.
The larger the probability of a protein-coding gene, the
closer the location to the source nodes; and thereby influ-
enced a lot by the source nodes. Then, the probabilities of
the protein-coding genes were normalized to their square
roots and defined as propagation scores. Finally, a ranked
gene list L was obtained by ranking the protein-coding
genes based on their propagation scores in the LMCN net-
work.
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2.4. Calculation of Pathway Enrichment Scores According to the
Propagation Scores

The related pathways were downloaded from the KEGG
database (23). To improve the reliability of the current
study, the pathways with less than 15 protein-coding genes
and more than 500 protein-coding genes were excluded.
The protein-coding genes in each pathway were mapped to
the ranked gene list L. If a protein-coding gene ranked at
the top of the gene list L, the pathway it enriched was more
possible to be influenced by the combinatorial effects of
lncRNAs.

The ESs is calculated by the Kolmogorov-Smirnov-like
statistics weighted by the propagation score. Higher ESs of
a pathway indicated that the protein-coding genes might
be ranked higher at the gene list L. The fraction of the genes
in the pathway (FInP) and that of the genes not in the path-
way (FNotP) were evaluated according to the below formu-
las (19):

(4)

F_InP(i) =
∑

gjεP

j ≤ i

|tj |P

NR
, where NR

=
∑
gjεP |tj |

P

(5)F_NotP(i) =
∑

gj /∈ P

j ≤ i

1
NNotP

where tj is the propagation score of gene j, NR is the
number of genes listed in L, and P is the propagation scores
of the genes in different pathways set to 1 in this formula.
When position i was walking down the L list, FInP - FNotP was
calculated by adding it when a gene was screened in the
pathway and discarding it when a gene was not in the path-
way. The ESs was defined by the following formula:

(6)ES(P ) = maxiεL {FInP (i)− FNotP (i)}

2.5. Statistical Analysis of Enriched Pathways

The same account of lncRNAs equal to the number of
source nodes was randomly selected from lncRNA-miRNA
intersections (identified based on LMCN network) to con-
struct the new LMCN network. Then, the propagation
scores of the protein-coding genes in the LMCN network
were recounted. The ESs of the pathways was also recom-
puted as well. The null distribution of the ESs (named
ESnull) was generated after performing 1000 permutations.
Then, the ESnull we compared with ES (P) to evaluate the
value of P, which was P Value = M/N, where N represented

the number of permutations, and M meant the number of
ESnull greater than ES (P).

The P value was adjusted by false discovery rate (FDR).
The pathways with P < 0.05 were regarded as competitive
lncRNAs coregulated pathways in ovarian cancer.

3. Results

3.1. Identification of Competitive lncRNAs Related to the Ovar-
ian Cancer

After preliminary screening, the gene expression pro-
file including 12,437 genes was obtained. Then, all these
genes were intersected with mRNA and lncRNA from the
miRNA-mRNA interactions and lncRNA-miRNA intersec-
tion, and new profiles including 8377 genes related to 8351
mRNA and 26 lncRNA were identified. After further screen-
ing, a regulatory relationship consisted of 275,902 miRNA-
mRNA and 601 lncRNA-miRNA intersections were identi-
fied.

3.2. Construction of LMCN Network
The LMCN network was constructed by a hypergeomet-

ric test with FDR correction for enrichment analysis of miR-
NAs that interacted with both lncRNA and mRNA. After
FDR correction, the lncRNA-mRNA intersections with P val-
ues less than 0.01 were identified. The network included
26 lncRNA, 7244 mRNA, and 19,756 lncRNA- mRNA interac-
tions.

Then, the correlation coefficient of lncRNA-mRNA in-
teractions was calculated by Pearson analysis to screen co-
expression network. As a result, the network including 11
lncRNA and 367 mRNA was constructed.

3.3. Identification of Source Nodes
In the current study, a total of 11 differentially expressed

lncRNAs between the normal and ovarian cancer sam-
ples were identified by the LCMN network (Figure 1); they
were: HCG18, TTTY15, LINC00663, LINC00652, PVT1, DGCR5,
RHPN1-AS1, LINC00667, MAPKAPK5-AS1, TUG1, and ENTPD1-
AS1.

3.4. Identification of Biological Pathway Coregulated by lncR-
NAs

To identify the biological pathways, the ES (p) value
of LMCN network was compared with the ESnull. With an
FDR < 0.05 pathway significance threshold, six biological
pathways coregulated by lncRNAs related to ovarian can-
cer were identified (Table 1); they were the hematopoietic
cell lineage pathway (P = 0), glycolysis gluconeogenesis
pathway (P = 0.02), ERBB signaling pathway (P = 0.02), RNA
degradation pathway (P = 0.036), endocytosis pathway (P =
0.036), and glycerophospholipid metabolism pathway (P =
0.04) (Figure 2).
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Figure 1. The ceRNA network constructed in the study. The red color indicates differentially expressed lncRNAs between the normal samples and the samples with ovarian
cancer; the blue color indicates that the nodes were connected to the hub lncRNAs.

4. Discussion

Increasing evidence shows that the aberrant expres-
sion of lncRNAs plays an essensial role in the tumor ma-
lignancy (24, 25). As well, more and more lncRNAs are in-
volved in the development of ovarian cancer (26, 27). How-
ever, these studies just focus on separate lncRNAs, which

might contribute to the misapprehension of the ovarian
cancer mechanism. The current study discovered several
lncRNAs related key pathways involved in ovarian cancer
by LncRNAs2Pathways algorithm. The current study re-
sults provided the key pathways in ovarian cancer develop-
ment and a new algorithm for further investigation of key
biological pathways. The key pathways involved in ovarian
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Table 1. Biological Pathway Coregulated by lncRNAs Related to Ovarian Cancer

Gene Set Name Enrichment Scores P Value FDR

KEGG_HEMATOPOIETIC_CELL_LINEAGE 0.89367 0 0

KEGG_GLYCOLYSIS_GLUCONEOGENESIS 0.82526 0.01 0.02

KEGG_ERBB_SIGNALING_PATHWAY 0.8481 0.01 0.02

KEGG_RNA_DEGRADATION 0.91531 0.03 0.036

KEGG_ENDOCYTOSIS 0.66622 0.03 0.036

KEGG_GLYCEROPHOSPHOLIPID_METABOLISM 0.83586 0.04 0.04

KEGG_HEMATOPOIETIC_CELL_LIEAGE KEGG_GLYCOLYSIS_GLUCONEOGENESIS KEGG_ERBB_SIGNALING_PATHWAY

KEGG_RNA_DEGRADATION KEGG_ENDOCYTOSIS KEGG_GLYCEROPHOSPHOLIPID_METABOLISM
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Figure 2. Protein-coding genes were mapped to the ranked protein-coding gene list, and the value of enrichment score was calculated. A, Enrichment score for hematopoietic
cell lineage; B, Enrichment score for glycolysis gluconeogenesis; C, Enrichment score for ERBB signaling pathway; D, Enrichment score for endocytosis; E, Enrichment score
for glycerophospholipid metabolism.

cancer discovered in the current study were hematopoietic
cell lineage pathway, glycolysis gluconeogenesis pathway,
ERBB signaling pathway, RNA degradation pathway, endo-
cytosis, and glycerophospholipid metabolism pathway.

Until now, the functional analysis of lncRNAs is per-
formed by several valuable ceRNA resources through
computer programs such as starBase, miRSponge, and
lncACTdb (21, 28, 29). The current study systematically
evaluated a set of lncRNAs based on a network propa-
gation strategy. The data were collected from patients
with ovarian cancer and healthy control subjects in EMBL-
EBI database. This database is an integration tool for
proteomics and structural biology and is the largest one
that included scientific experiments data (30). First, an
LMCN network was constructed by integrating lncRNA-
mRNA and lncRNA-mRNA intersections; then, the lncRNAs
were mapped to the network and were regarded as source
nodes; and the RWR algorithm was applied to evaluate the

effect of source nodes on protein-coding genes. Finally, the
Kolmogorov-Smirnov-like statistics was used weighted by
the propagation score to evaluate the enrichment value of
each functional pathway. Based on the scale of the net-
work, only the coexpressed gene pairs with a cutoff of three
datasets were retained. By combining P values across mul-
tiple databases, the gene coexpressed relationships were
also extracted (31). Therefore, this method can be applied
by researchers who only use a software package.

The “glycolysis effect” in cancer cells was suggested by
Warbug that found the phenomenon of damaged respira-
tion and the production of increased lactate (32). There-
fore, the glycolysis pathway is a common pathway that
happens in most cancer cells, ovarian cancer is no excep-
tion. The current study found that this pathway was a key
one that might play an essensial role in the development
of ovarian cancer.

The function of lncRNAs in glycolysis pathway gained
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much attention in recent research. For example, Ru-
paimoole et al. (33) demonstrated that the lncRNAs ceru-
loplasmin modulated the metabolism of ovarian cancer
by binding a partner between the signal transducer and
activator of transcription 1 and RNA polymerase II, lead-
ing to upregulation of glucose-6-phosphate isomerase (35).
Another study performed by Luo et al. (34) showed that
the metastasis-associated lung adenocarcinoma transcript
1 could enhance the glycolysis through hypoxia-inducible
factor (HIF)-1α stabilization in hepatic L-02 cells. Liu et al.
(35) reported that the MiR-186 inhibited aerobic glycoly-
sis in gastric cancer via HIF-1α regulation; in their further
study, a novel role for HIF transcriptional pathway is pro-
posed in gastric cancer by regulation of adenocarcinoma
associated, positive CD44 regulator, long intergenic non-
coding RNA (36). In ovarian cancer, it is also suggested
that HIF-1α upregulates its downstream gene (such as glu-
cose transport protein 1) to enhance glycolytic ability (37).
Therefore, it was assumed that the glycolysis might be as-
sociated with coregulation of lncRNAs in ovarian cancer,
which confirmed the results that the glycolysis was one of
the top altered pathways in ovarian cancer.

The ERBB signaling pathway detected in the current
study is involved in the tumor development and pro-
gression. In ovarian cancer, ERBB2 was one of the onco-
genes, which negatively regulated the apoptosis in an in-
tegrated hierarchical network of ovarian cancer (38). Glyc-
erophospholipid metabolism pathway detected in the cur-
rent study was also identified before (39). As it is already
known, the glycerophospholipids are the components of
the cell membrane. They are involved in the fatty acid syn-
thesis, which is indispensable for highly proliferating can-
cer cells (40). Therefore, it was hypothesized that the glyc-
erophospholipid metabolism pathway detected in the cur-
rent study reflected abnormal proliferation of ovarian can-
cer. Therefore, the glycerophospholipids might be used as
biomarkers to distinguish the patients with ovarian cancer
from the healthy individuals, and provide a new means for
diagnosis.

The current study had several limitations, which
should be pointed out. First, the LncRNAs2Pathways did
not consider the association degree between lncRNAs and
ovarian cancer, thus the other network-based algorithms
should be modified for better performance. Second, the re-
sults of the current study were not verified by basic exper-
iments.

In conclusion, the LncRNAs2Pathways is effective to
identify key functional pathways in ovarian cancer, and
convenient to understand the coregulated relationships
among these pathways.

Footnote

Authors’ Contribution: Lu-yun Qu and Hai-yang Jiang are
co-first authors.
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