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Abstract

Background: Tumor stage is one of the most reliable prognostic factors in the clinical characterization of colorectal cancer. The
identification of genes associated with tumor staging may facilitate the personalized molecular diagnosis and treatment along with
better risk stratification in colorectal cancer.
Objectives: The study aimed to identify genetic signatures associated with tumor staging and patients’ survival in colorectal cancer
and recognize the patients’ risk category for clinical outcomes based on transcriptomic data.
Methods: In this retrospective cohort study, two available transcriptomic datasets, including 232 patients with colorectal cancer
under accession number GSE17537 and GSE17536 were used as discovery and validation sets, respectively. A Bayesian sparse group
selection method in the discovery set was applied to identify the associated genes with the tumor staging. Then further screen-
ing was performed using survival analysis, and significant genes were used to develop a gene signature model. Finally, the robust
performance of the signature model was assessed in the validation set.
Results: A total of 56 genes were significantly associated with the tumor staging in colorectal cancer. Survival analysis resulted in
a shortlist of 19 genes, including ADH1B (P = 0.012), AHI (P = 0.006), AKAP12 (P = 0.018), BNIP3 (P = 0.015), CLDN11 (P = 0.015), CST9L
(P = 0.028), DPP10 (P = 0.029), FBXO33 (P = 0.036), HEBP (P = 0.025), INTS4 (P = 0.003), LIPJ (P = 0.001), MMP21 (P = 0.006), NGRN (P
= 0.014), PAFAH1B2 (P = 0.035), PCOLCE2 (P = 0.009), PIM1 (P = 0.007), TBKBP1 (P = 0.003), TCEB3B (P = 0.001), and TIPARP (P = 0.018),
developing the signature model and validation. In both discovery and validation sets, the discrimination ability of the signature
model to categorize patients with colorectal cancer into low- and high-risk subgroups for mortality and recurrence at 3- and 5-years
showed good discrimination performances, with the area under the receiver operating characteristic curve (ROC) ranging from
0.64 to 0.88. It also had good sensitivity (discovery set 63.1%, validation set 61.7%) and specificity (discovery set 75.0%, validation set
59.3%) to discriminate between early- and late-stage groups.
Conclusions: We identified a 19-gene signature associated with tumor staging and survival of colorectal cancer, which may repre-
sent potential diagnosis and prognosis markers, and help to classify patients with colorectal cancer into low- or high-risk subgroups.

Keywords: Bayesian Approach, Colorectal Cancer, Gene Expression Signatures, Microarray Analysis, Prognosis, Recurrence, Overall
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1. Background

Colorectal cancer (CRC) is the third most frequent can-
cer and the fourth leading cause of cancer-related death
worldwide (1). As a complex disease, CRC is affected by sev-
eral genetic and environmental factors (2). In recent years,
intensive studies have been conducted to provide more in-
sight into molecular alterations in the CRC. However, the
molecular mechanisms underlying the CRC progression
and tumor metastasis are still unclear.

Identification of the tumor stage is currently the most
reliable prognostic factor in the CRC (3). It is strongly as-

sociated with the survival of patients with CRC and influ-
ences the decision-making about the treatment plans (4).
The tumor node metastasis (TNM) staging system is a tra-
ditional approach to divide the cancer into four categories,
namely I, II, III, and IV, based on the clinicopathologic fea-
tures, including tumor size, nodal spread, and metastasis.
A higher stage is corresponding to a further progression
of cancer and poorer clinical outcomes. Therefore, iden-
tification of genes associated with the TNM staging of the
CRC can help to discover novel diagnostic and prognos-
tic biomarkers, and develop an improved prognostic tool
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to optimize the personalized treatment and risk stratifica-
tion of patients with CRC.

Currently, the systems biology approach in solving bi-
ological problems is a new approach that simultaneously
considers all changes at different levels of the gene expres-
sion. Meanwhile, there is a huge amount of transcrip-
tomics data that can be explored using a variety of statis-
tical analysis methods or data mining techniques.

2. Objectives

In this study, we attempted to identify a robust gene
signature based on genes associated with the tumor stage
for risk stratification of patients with CRC by taking into
consideration the high correlation between genes in mi-
croarray data through a Bayesian approach. Finally, the ro-
bust performance of the signature model was validated in
an independent cohort dataset.

3. Methods

3.1. Microarray Data and Data Preprocessing

In this retrospective cohort study, two previously
published transcriptomics datasets, including 232 pa-
tients with colorectal cancer (5) under accession number
GSE17537 and GSE17536 were used as discovery and vali-
dation sets, respectively in the Gene Expression Omnibus
(GEO) (www.ncbi.nlm.nih.gov/geo) for which met the fol-
lowing inclusion criteria: (a) being human gene expres-
sion data, (b) profiled on the Affymetrix HG-U133_Plus_2
platform, (c) information about age, sex, pathological tu-
mor staging (stage I-IV), death status, and survival time. De-
tails of protocols and procedures of data collection, instru-
ments, and variables measurement are available (5). Raw
data of both datasets were downloaded and normalized us-
ing the Robust Multi-array Average (RMA) algorithm (6).
The Z-score transformed was used to standardize the ex-
pression value of each gene.

3.2. Statistical Analysis

All analyses were performed using R programming
software version 3.5.0. Figure 1 shows the workflow of the
study. At first, primary screening was performed using the
significance analysis of microarrays (SAM) algorithm (7)
available in “siggenes” package (8) to detect differentially
expressed genes (DEG) between the different stages of CRC
in the discovery set (GSE17537). A false discovery rate (FDR)
< 0.1 was set for identification DEGs.

Downloading mRNA expression data 

and clinical information 

Normalization and z-score transformation 

SAM analysis with FDR<0.10 

Defining the group structure of genes 

using K-means clustering and Gap statistic 

The Bayesian penalized ordered 

response model analysis  

Further screening using 

survival analysis  

Developing a gene signature model  

Validation  

Figure 1. Flow chart of the analysis procedure, including data collection, prepro-
cessing, analysis, and validation

3.3. Detection of Associated Genes with the TNM-Staging of CRC
in the Discovery Set

After differential gene expression analysis, the parallel
line assumption was tested using a score test in a univari-
ate ordered probit model for each gene. Then a multiple
penalized ordinal probit model was used to discover the as-
sociated genes with the TNM-staging of patients with CRC.
In this model, we used a Bayesian sparse group selection
(BSGS) method for variable selection, which took into ac-
count the group structures between genes in microarray
data. The BSGS method was proposed by Xu and Ghosh (9)
for a linear model. They showed the superior accuracy and
excellent performance of this method for variable selec-
tion and prediction by simulation. In the BSGS method, it
is assumed that predictors to be partitioned into G groups
and spike and slab priors are used to select variables at
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both group and within-group levels. The formulation of
the prior for the coefficient vector of the gth group can be
written as (9):

βg = V
1
2

g bg,

where V
1
2

g = diag
{
τg1, . . . , τgmg

}
τ gj ≥ 0,
g = 1, …, G,
j = 1, …, mg

bg
ind∼ (1− π0)Nmg

(
0, Img

)
+ π0δ0 (bg) ,

τgj
ind∼ (1− π1)N

+ (
0, s2

)
+ π1δ0 (τgj) ,

π0 ∼ Beta (1, 1) , π1 ∼ Beta (1, 1) , s2 ∼ IG (1, t) .

where βg represents the group level coefficients of
length mg, bg is the regression coefficients within groups,
Nmg

(
0, Img

)
denotes a multivariate standard normal dis-

tribution,N+
(
0, s2

)
denotes a normal distribution trun-

cated below at 0, δ0 (.) is a point mass density function
at zero, and t is the scale parameter of inverse gamma
distribution for s2 and is estimated with the Monte Carlo
EM algorithm. In this study, we defined the group struc-
ture of genes using the K-means approach owing to its ef-
ficiency in clustering large datasets, low computational
cost, and relatively robustness (10). We determined the op-
timal number of groups by using the Gap statistic (11). Then
we considered the stage of CRC as an ordinal response vari-
able and used an extension of BSGS method for an ordi-
nal probit model using the latent variable approach, as de-
scribed by Albert and Chip (12).

3.4. Further Screening and Validation of Candidate Genes

The prognostic value of candidate genes was investi-
gated by establishing a gene signature (risk score) model.
The risk score model developed based on the expression
level of survival-associated genes with a P value < 0.05 as
the significant difference, weighted by the corresponding
regression coefficients in the univariate Cox models (13,
14). Then the patients were divided into low- or high-risk
groups by the peak value in the frequency distribution his-
togram of the risk scores as the cut-off point (15, 16) and the
following statistical analyses were used to assess the prog-
nostic properties of the gene signature model in the dis-
covery set. The Kaplan-Meier curve and the log-rank test
were used to assess overall survival (OS) and recurrence-
free survival (RFS) differences between the two groups, re-
spectively. The time-dependent receiver operating charac-
teristic (ROC) curve analysis was used to evaluate the accu-
racy of the gene signature for predicting OS and RFS. We

also investigated the association between the gene signa-
ture model and tumor stages of patients with CRC. The ROC
curve analysis was applied to quantify how accurately the
gene signature model can discriminate between two early-
and late-stage groups (I and II stages vs. III and IV stages).
The age- and gender-independent prognostic value of the
signature were also evaluated using multivariate Cox re-
gression models. We validated the gene signature model
using the independent GSE17536 dataset. To this end, the
same gene signature model and the cut-off value were used
to categorize the patients in the validation set. Next, the
mentioned statistical analysis was applied to assess the sig-
nature model performance in the validation set.

3.5. Gene Set Enrichment

All 19 identified genes were used for
enrichment analysis in Enrichr database
(http://amp.pharm.mssm.edu/Enrichr). The Pathway
and Gene Ontology (GO) results were used for annota-
tion of the results as the biological process and involved
pathways.

4. Results

4.1. Demographic and Clinical Characteristics

In this study, we analyzed the data on a total of 232
CRC samples, including 55 samples in the GSE17537 discov-
ery set and 177 samples in the GSE17536 validation set. The
median OS was more than 111 months for the discovery set
and 135 months for the validation set. The median RFS was
more than 76 months for the discovery set and more than
142 months for the validation set. Other demographic and
clinical characteristics of the patients are shown in Table 1.

Table 1. Demographic and Clinical Characteristics of the Patients in Discovery Set
(GSE17537), and Validation Set (GSE17536)a

Variable GSE17537 GSE17536

Age, y 65.4 ± 13.1 62.3 ± 14.4

Gender

Male 29 (52.7) 85 (48.0)

Female 26 (47.3) 92 (52.0)

Stage

I 4 (7.3) 24 (13.6)

II 15 (27.3) 57 (32.2)

III 19 (34.5) 57 (32.2)

IV 17 (30.9) 39 (22.0)

No. of death 20 (36.3) 73 (41.2)

No. of recurrence 6 (10.9) 36 (20.3)

aValues are expressed as mean ± SD or No. (%).
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4.2. The Discovery of Genes Associated with the TNM-Stage of
CRC

A total of 23,520 genes were obtained from each dataset
after preprocessing. The SAM analysis resulted in a list of
1,850 genes, which were clustered in 9 groups using the
K-means approach and the Gap statistic. The Bayesian pe-
nalized ordinal probit model based on the predefined clus-
ters resulted in the identification of 56 genes as potential
biomarkers associated with the tumor stages of CRC. The
prediction accuracy of the Bayesian model was 83.6% based
on leave-one-out cross-validation method.

4.3. Further Screening and Validation of Candidate Genes

The results of the univariate Cox model showed that 19
genes of 56 candidate genes were associated with the OS
of patients with CRC. We summarized the overall informa-
tion of these genes in Table 2.

Table 2. Overall Information of the 19 Genes Associated with TNM Staging and OS of
Patients with CRC in the Discovery Set

Gene Symbol

Bayesian Penalized
Ordinal Response

Model

Univariate Cox model

β (SD) HR (95% CI) P Value

ADH1B 0.11 (0.05) 1.55 (1.10, 2.19) 0.012

AHI1 -0.08 (0.04) 0.45 (0.25, 0.80) 0.006

AKAP12 0.13 (0.05) 1.48 (1.07, 2.05) 0.018

BNIP3 0.13 (0.05) 1.65 (1.10, 2.47) 0.015

CLDN11 0.10 (0.06) 1.59 (1.09, 2.30) 0.015

CST9L -0.10 (0.05) 0.58 (0.36, 0.94) 0.028

DPP10 0.31 (0.08) 1.42 (1.04, 1.95) 0.029

FBXO33 0.14 (0.06) 1.72 (1.04, 2.84) 0.036

HEBP2 0.10 (0.05) 1.73 (1.07, 2.79) 0.025

INTS4 -0.09 (0.05) 0.50 (0.34, 0.73) 0.003

LIPJ -0.10 (0.05) 0.53 (0.35, 0.78) 0.001

MMP21 -0.12 (0.05) 0.55 (0.35, 0.84) 0.006

NGRN 0.10 (0.05) 1.72 (1.12, 2.64) 0.014

PAFAH1B2 -0.19 (0.05) 0.54 (0.31, 0.96) 0.035

PCOLCE2 0.13 (0.06) 1.60 (1.12, 2.27) 0.009

PIM1 0.15 (0.05) 1.94 (1.20, 3.12) 0.007

TBKBP1 -0.16 (0.06) 0.54 (0.36, 0.81) 0.003

TCEB3B -0.11 (0.05) 0.41 (0.25, 0.68) 0.001

TIPARP 0.14 (0.05) 1.62 (1.09, 2.41) 0.018

Abbreviations: SD, standard deviation; HR, hazard ratio; CI, confidence interval.

The coefficients of these genes were used to develop
the gene signature model. The risk score for each patient
was calculated based on the gene signature model and di-
vided into low- or high-risk groups based on the cut-off

value of -1.21 (the peak value of the frequency distribution
histogram of the risk scores). The expression heat map of
the 19 candidate genes of all patients is shown in Figure 2.

The log-rank test showed a significant difference be-
tween OS and also RFS curves for the two groups in both
discovery set (OS: P = 0.0002, RFS: P = 0.031, Figures 3A and
2B), and validation set (OS: P = 0.009, RFS: P = 0.026, Figures
3C and 2D).

Time-dependent ROC curve analysis showed that in the
discovery set, the signature model could predict the 3-, and
5-year OS of patients with CRC, as the AUC values were 0.88,
and 0.81, respectively (Figure 4A). While in the validation
set, the AUC values at 3- and 5-year OS of patients with CRC
were 0.65, and 0.64, respectively (Figure 4B). In the discov-
ery set, the AUC values at 3- and 5-year RFS of patients with
CRC were 0.83, and 0.80, respectively (Figure 4C). Whereas
in the validation set, the AUC values at 3- and 5-year RFS of
patients with CRC were 0.64, and 0.68, respectively (Fig-
ure 4D). All of the time-dependent AUC values exceed 0.6.
These results suggested that our 19-mRNA signature model
has good performance for the prediction of disease course
in patients with CRC.

The patients with early-stage had a significantly lower
risk score than patients with late-stage in both discovery
set (t = -4.3503, df = 42.915, P = 0.008), and validation set
(t = -2.681, df = 170.09, P < 0.001). The sensitivity, speci-
ficity, and AUC for discriminating between early- and late-
stage patients in the discovery set by the 19-gene signature
model were 63.1%, 75.0%, and 70.9%, respectively, as shown
in Figure 5A. These values were 61.7%, 59.3%, and 60.0% re-
spectively, for the validation set (Figure 5B). Therefore, the
19-mRNA signature model had relatively good sensitivity
and specificity to discriminate between two early- and late-
stage groups.

The age-independent and gender-independent prog-
nostic values of the signature were further evaluated us-
ing multivariate Cox regression models. The results from
multivariate Cox regression suggested that our signature
model is independent of both age and gender in the prog-
nosis of patients with CRC in the discovery set (OS: HR, 1.17;
95% CI, 1.09 - 1.26, and RFS: HR, 1.41; 95% CI, 1.08 - 1.85) and
in the validation set (OS: HR, 1.92; 95% CI, 1.11 - 3.32, and RFS:
HR, 1.13; 95% CI, 1.04 - 1.23).

4.4. Gene Set Enrichment

The results of gene set enrichment indicated that most
of the identified genes are involved and formerly reported
in the CRC. Meanwhile, most of the genes showed basal
expression in the CRC. Also, most of the genes are mito-
chondrial genes and are located within the outer mem-
brane of the mitochondria involved in energy metabolism
in CRC cells. According to biological processes of the
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Figure 2. Expression heat map of 19-gene signature (sorted by risk score) (A) in the discovery dataset and (B) validation dataset

GO database, different types of autophagy, including mi-
tophagy, xenophagy, aggrophagy, and lipophagy are the
most important enriched signaling pathways. Perturba-
tions in fatty acid and lipid metabolism are also frequent
in the KEGG pathway database (Figure 6).

5. Discussion

In the present study, we identified a novel 19-mRNA
gene signature model associated with the TNM staging and
OS of patients with CRC using transcriptomic data analy-
sis. Our signature model was able to classify the patients
with CRC into low- and high-risk subgroups for mortal-
ity, and recurrence and also had rather good sensitivity
and specificity to discriminate between two early- and late-
stage groups. Therefore, the gene signature model may
provide new promising biomarkers for predicting OS and
RFS in patients with CRC and a novel strategy for the preop-
erative diagnosis and postoperative treatment in patients
with CRC. Moreover, our signature model was independent
of both age and gender in the prediction of the prognosis
of patients with CRC. Thus it has the capability of practical
usage in larger patient groups, regardless of gender or age.

The enrichment analysis, determining the biological
functions of identified genes indicated that most of these
genes are mainly involved in different types of autophagy
through Gene Ontology (GO) terms. Also, we found that
these genes are frequently observed in perturbations in

fatty acid and lipid metabolism based on the KEGG path-
way database. These results suggest there is a possible con-
nection between the identified genes and progression or
prognosis of CRC (17, 18).

A literature review showed the possible role of 15 of
the 19 candidate genes have formerly been identified in the
CRC and other cancer types. It is demonstrated that the
ADH1B gene polymorphism has a direct effect on colorectal
carcinogenesis (19). The AHI-1 gene encodes the Jouberin
protein, and its mutation is associated with the develop-
ment of leukemia and lymphoma (20). The AKAP12 gene is
one of the A-kinase scaffold proteins, and studies have in-
dicated its suppressive role in the CRC (21). The frequent
occurrence of BNIP3 methylation in the CRC suggests its
possible contribution to tumorigenesis (22). Hypermethy-
lation of CLDN11 plays a crucial role in CRC metastasis and
poor survival (23). An earlier study suggested that DPP10
may play a vital role in the CRC progression and may be
an independent prognostic marker in the CRC (24). The
high expression of HEBP2 has been reported in the CRC
(25). A previous study has reported the overexpression of
MMP21 is associated with poor survival in the CRC (26). The
PAFAH1B2 is a gene overexpressed in some types of can-
cers (27). The PCOLCE2 is found to be overexpressed in spo-
radic CRC and may play a role in cancer cell metastasis
(28). The PIM1 gene is overexpressed in a variety of cancers
such as prostate cancer and lymphoma (29), suggesting
the contribution of PIM1 to the tumor development and
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Figure 3. Kaplan-Meier analysis with two-sided log-rank test estimates of the OS and RFS of patients with CRC using the 19-mRNA signature. (A) Kaplan-Meier curves of OS for
the discovery set patients; (B) Kaplan-Meier curves of RFS for the discovery set patients; (C) Kaplan-Meier curves of OS for the validation set patients; (D) Kaplan-Meier curves
of RFS for the validation set patients.

progression of several types of tumors. One study has re-
ported that the expression of TIPARP is decreased in ovar-
ian cancer (30). Up-regulation of CST9L has been reported
in pancreatic cancer (31). Low expression of FBXO33 gene
is associated with a lower survival rate in renal cell carci-
noma (32). Based on The Human Protein Atlas database
(http://www.proteinatlas.org), the other genes, including
INTS4, LIPJ, NGRN, TBKBP1, and TCEB3B, show a weak expres-
sion pattern in the CRC in immunohistochemistry stain-
ing.

The current study was a microarray-based transcrip-
tome analysis. Analysis of microarray data is a challeng-
ing task because of a large number of genes measured (p ~
103-4) vs. too small sample sizes (n ~ 102), and also the pres-
ence of group structure (high correlation) between genes
(10). Penalized regression models such as LASSO (least
absolute shrinkage and selection operator) are powerful
tools to overcome the limitation of sample size in high di-
mensional data (n < p). In this study, we used a Bayesian pe-
nalized ordered probit model to analyze microarray data.
Our model has some properties, which make it superior

over other penalized regression models. It was performed
in a Bayesian manner, which does not need to large sample
assumption and could handle small datasets without los-
ing the power and precision (33). It takes into account the
group structure between genes in transcriptomics data
and has the capability of variable selection at the group
level. On the other hand, since the group structure be-
tween genes does not mean that all genes within a group
are associated with the outcome; thus it is necessary to se-
lect genes within the groups. Consequently, variable the
selection within a group results in the smallest set of the
most important variables, which improves the prediction
of the performance (9).

The main strength of our research is that we applied
a more rational methodology to analyze microarray tran-
scriptome data, and our signature model was derived from
both tumor staging-related and survival-related mRNAs.
Thus our finding may be more reliable for prognostic as-
sessment of patients with CRC.

There are several limitations to this study. First, we in-
vestigated and discovered the biomarkers by using one mi-
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croarray data with limited sample size. Thus further vali-
dation using integrated microarray gene expression data
to increase sample size may improve the statistical power
and provide more robust results. Second, our study was
conducted in a retrospective manner. Therefore, a com-

prehensive evaluation of these biomarkers with prospec-
tive randomized trials remains to be determined in future
studies. Third, we defined the group structure of genes us-
ing the K-means approach. A biological clustering, when
full pathway information is available, could improve the
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Figure 6. The GO and KEGG pathway enrichment analysis of the genes in the signature model. Abbreviations: GO, Gene Ontology; KEGG, Kyoto Encyclopedia of Genes and
Genomes; CC, cellular component; BP, biological process; DS, disease signature; TS, tissue sample.

results.
In conclusion, we identified a 19-mRNA signature

model in this study, which may represent potential
biomarkers for diagnosis and prognosis of CRC and helps
to classify patients with CRC into low- or high-risk sub-
groups.
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