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Abstract 
Background: Melanoma is an aggressive tumor caused by melanocytes characterized by a poor prognosis at the stage of metastasis. 
Therefore, it is crucial to identify biomarkers for progression and prognosis for the treatment of melanoma. 
Objectives: The study aimed to identify the specific genes related to the prognosis of melanoma utilizing bioinformatics analyses. 
Methods: Differentially expressed genes (DEGs) between melanoma tissues and normal tissues were screened from the GSE 3,189 gene 
expression profile of Gene Expression Omnibus (GEO). A co-expression network was constructed by weighted correlation network analysis 
(WGCNA). Functional enrichment analysis for DEGs was performed. The risk prognostic model and nomogram predictive model were 
established utilizing the least absolute shrinkage and selection operator (LASSO) and Cox regression analysis. 
Results: Using the differential expression analysis and WGCNA, 1,408 DEGs were screened between melanoma tissues and normal tissues. 
Functional enrichment analysis proved that these genes primarily participated in the cell cycle and mitotic phase regulation in cancer. In 
addition, 17 optimal DEGs were identified for constructing the risk score prognostic model. Cox regression analysis further revealed that 
ectonucleotide pyrophosphatase/phosphodiesterase 4 (ENPP4) and FGR proto-oncogene, Src family tyrosine kinase (FGR) were the key 
genes significantly associated with survival. A nomogram prediction model was established for individual survival probability by integrating 
pathological T/N/M stage, age, ENPP4, and FGR. High FGR or ENPP4 expression indicated a better prognosis in melanoma patients. 
Conclusion: This study identified FGR and ENPP4 as potentially useful prognostic biomarkers for melanoma. The corresponding risk score 
prognostic model and nomogram may be a reliable tool for predicting the prognosis of melanoma patients. 
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tyrosine kinase (FGR) 

 
1. Background 

Melanoma is an aggressive tumor caused by 
melanocytes, mostly in the skin, but also visible in the 
mucosa and internal organs, accounting for about 3% 
of all tumors (1). patients with early melanoma may 
experience rapid enlargement of the original mole, 
swelling, shape or color change, and even itching, 
bleeding, as well as other symptoms and signs (2). 
The prognosis of early diagnosed non-metastatic 
primary cutaneous melanoma is generally 
satisfactory; nonetheless, metastatic melanoma is 
very fatal (3). The five-year survival rate of patients 
with metastatic melanoma is about 16% (4). Despite 
the utilization of surgery, chemotherapy, targeted 
therapy, and immunotherapy, the survival rate is still 
very low (4). The main risk factors for melanoma 
include sunburn, ultraviolet radiation, and 
anomalous moles; however, the specific molecular 
mechanism is still unclear (5). Therefore, the 
identification of new biomarkers for prognosis and 
early diagnosis is crucial in improving the survival 
rate of melanoma patients. 

With the development of genomic microarray and 
high-throughput sequencing technology, bioinformatics 
analysis is rapidly becoming the mainstream method of 

cancer research. It has made great contributions to the 
identification of cancer-related biomarkers, the 
discovery of cancer mRNA vaccines, the prediction of 
prognosis, and the development of targeted therapies 
(6-10). On the basis of RNA sequencing, accumulating 
studies have identified differentially expressed genes 
(DEGs) as biomarkers involved in the development of 
different cancers (11-13), including melanoma. It has 
been verified that cyclooxygenase-2 (COX-2), which is 
an independent prognostic biomarker for melanoma, 
exerts a crucial function in melanoma development and 
chemoresistance (14). Centromere protein F (CENPF) 
plays a major role in the metastasis of melanoma and 
can be used as a prognostic biomarker (15).  

PPARgamma coactivator 1 alpha (PGC1A) is a 
metabolic transcriptional coactivator that inhibits the 
metastasis of melanoma via suppressing oxidative 
stress injury (16). Sialidase neuraminidase 1 (NEU1) 
may act as a biomarker for melanoma cell growth and 
migration (17). Nevertheless, the application of 
relevant research in clinical practice is still very 
limited. Therefore, further research is still necessary 
to identify novel specific biomarkers to improve the 
prognosis of melanoma patients. Gene Expression 
Omnibus (GEO) belongs to an international public 
repository of microarrays, next-generation 
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sequencing, and other high-throughput forms of 
functional genomic data (18). It offers an 
opportunity for data mining of cancer gene 
expression profiles, which lays the foundation for 
promoting the early diagnosis, therapy, and 
prevention of various cancers (19). 

In this study, a comprehensive analysis of 
microarray data from the GEO was used to identify 
differentially expressed genes in melanoma and 
normal tissues. Weighted gene co-expression 
network analysis (WGCNA) was applied to identify 
the key genes closely associated with melanoma 
progression. The biological function and signaling 
pathways associated with melanoma were assessed 
by functional enrichment analysis of DEGs. 
Furthermore, Cox regression analysis, least absolute 
shrinkage, and selection operator (LASSO) regression 
analysis were performed using clinical information 
and key genes to establish a risk prognosis model. 

 
2. Objectives 

The study aimed to identify the specific genes 
related to the prognosis of melanoma utilizing 
bioinformatics analyses. 

 
 

3. Methods 

DEGs Screening 
We downloaded the GSE3189 dataset from the 

GEO database (https://www.ncbi.nlm.nih.gov/geo/). 
The GSE3189 dataset included 45 melanoma tissue 
samples and 18 normal nevi tissue samples (20). 
These data were normalized using the normalize 
Between Arrays function in the "limma" R package 
(21). The principal component analysis (PCA) was 
implemented by the "factoextra" R package. 
Thereafter, the limma package was employed for 
identifying the DEGs between the reference (ref) 
group and test group. DEGs were screened in 
accordance with the criterion (P < 0.05 and log 
|FC|> 1). In addition, ggplot2 was applied to make the 
volcano map and heat map to illustrate the 
differential expression of DEGs. 

 
WGCNA 

WGCNA (https://horvath.genetics.ucla.edu/html/ 
CoexpressionNetwork/Rpackages/WGCNA/) on the 
GSE117613 dataset was performed by utilizing the 
WGCNA R package (22). The samples were subjected 
to the hierarchical clustering analysis for detecting 
and removing outliers. In accordance with the 
WGCNA user guides, the pickSoftThreshold function 
was employed to determine the best soft-threshold 
power to meet the scale-free topology criterion. We 
set the soft threshold of 7 to make the co-expression 
network meet the scale-free distribution. The 
adjacency matrix was transformed into a topological 
overlap matrix. Meanwhile, the WGCNA package was 

applied for clustering the matrix. The dynamic tree-
cutting algorithm merged genes with similar 
expression patterns into the same module (module 
size = 30). Gene significance and module members 
were counted to assess the correlation between 
modules and melanoma. The module with the highest 
correlation with melanoma was selected. Venn 
analysis was carried out to screen out the common 
genes in the key module and DEGs. 

 
Functional Enrichment Analysis 

Gene Ontology (GO) enrichment analysis 
(https://www.geneontology.org/), Kyoto Encyclopedia 
of Genes, Genomes (KEGG) enrichment analysis 
(https://www.genome.jp/kegg/), and Gene Set 
Enrichment Analysis (GSEA) (https://www.gsea-
msigdb.org/gsea/index.jsp) of DEGs were 
implemented utilizing the ClusterProfiler and 
Enrichplot packages of R (23, 24). The molecular 
Signatures Database (MsigDB) database 
(https://www.gsea-msigdb.org/gsea/msigdb) was 
used as a reference for GSEA. |NES|≥1 and P< 0.05 
was considered statistically significant. The terms 
were visualized by utilizing the ggplot2 package. 

 
Establishment of the Prediction Risk Model 

Cox regression screening was carried out for 
prognostic DEGs with the R survival package (25). 
The LASSO regression analysis was implemented by 
the glmnet package to establish a predictive risk 
model (26), and 10-fold cross-validation for model 
construction was conducted. Risk score = Coefficient 
× gene expression. Patients were divided into the 
high-risk and low-risk groups, with the median risk 
score as the cut-off criterion. Kaplan-Meier analysis 
(https://kmplot.com/analysis/) and log-rank test 
were utilized to evaluate the difference in overall 
survival by R survival package.  

 
Establishment of the Nomogram Prognosis Prediction 
Model  

We established a prognostic nomogram combing 
gene expression with clinical information to predict 
1-year survival in individual patients using the rms R 
package. Clinical parameters included age, pathologic 
T stage, pathologic N stage, and pathologic M stage. 
Decision curve analysis (DCA) was applied to 
determine the predictive model accuracy and the 
clinical utility of each model (27). 

 
4. Results 

Identification of DEGs in melanoma 
We performed the difference analysis on the 

GSE3189 dataset. we observed the differences in 
gene expression between the ref group and the test 
group using PCA (Figure 1A). Using the limma 
package, we obtained DEGs of GSE3189, including 
1157 downregulated genes and 975 upregulated 
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genes. The outcomes of the DEG analysis were 
represented as a volcano diagram and heatmap 
(Figure. 1B-C). The boxplots demonstrated that the 
expression distribution of samples was consistent, 
suggesting a good normalization (Figure 1D). All of 
these results illustrated that in GSE3189, there were 
1,157 down-regulated genes and 975 up-regulated 
genes in melanoma. 

 
Weighted gene co-expression network construction 

To detect the key module most relevant to 
melanoma, WGCNA was performed on the GSE3189 
dataset. The WGCNA package was written in R 
language. In order to establish a scale-free network, 
β = 7 (scale-free R2 = 0.86) was selected as the 
optimum soft threshold value (Figure 2A-B). Modules 

of eigengenes were identified, and modules were 
clustered in accordance with their correlation. A total 
of 22 modules (dark olive green, royal blue, steel 
blue, blue, light cyan, pale turquoise, grey, dark red, 
light green, salmon, dark orange, black, cyan, violet, 
dark grey, dark magenta, dark turquoise, midnight 
blue, green, purple, grey 60, and magenta module) 
were identified in accordance with their co-
expression pattern (Figure 2C-D). We discovered that 
the blue module was mostly associated with 
melanoma (Figure 2E). 1408 genes for melanoma 
were screened after taking the intersection of 
WGCNA (the blue module) and Limma (DEGs) (Figure 
2F). All these results pointed out that after taking the 
intersection of WGCNA and Limma, a total of 1408 
melanoma-related genes were screened. 

 

 
Figure 1. Identification of DEGs in melanoma 
(A) PCA of the GSE3189 dataset visualizes the grouping information of samples. (B) The volcano diagram of all DEGs of the GSE3189 dataset. 
(C) Heatmap of the top 50 DEGs. (D) Boxplots of sample expression. 
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Figure 2. Weighted gene co-expression network establishment 
(A-B) Scale-free fit index and mean connectivity are analyzed with assorted soft-threshold powers. (C) Hierarchical clustering of 22 module 
eigengenes. (D) Gene cluster dendrogram on the basis of module eigengenes. (E) The analysis of correlation of module eigengenes and 
normal group and melanoma group in a heatmap. (F) The Venn diagram shows the intersection of WGCNA and Limma. 
 

GO and KEGG enrichment analysis of DEGs 
GO and KEGG enrichment analyses were 

implemented to determine the biological functions of 
DEGs. GO analysis consisted of biological processes 
(BP), cellular components (CC), and molecular 
function (MF). As illustrated in Figure 3A-C, BP most 
commonly associated with DEGs were actin filament 
organization, regulation of actin cytoskeleton 
organization, and skin development. CC most 
commonly associated with DEGs were cell-cell 
junction, collagen-containing extracellular matrix, 
and cornified envelope. MF most commonly 
associated with DEGs were cadherin binding, 
structural constituent of cytoskeleton, and cell 
adhesion mediator activity. The significantly enriched 

KEGG terms were Axon guidance, Pathogenic 
Escherichia coli infection, and lysosome. Moreover, 
we further determined the enrichment of DEGs with 
Log2 FC in these biological functions. As displayed in 
Figure 3D-F, the relatively large amounts of DEGs 
were enriched in the collagen-containing 
extracellular matrix, cell-cell junction, actin filament 
organization, cornified envelope, regulation of actin 
cytoskeleton organization, and skin development. In 
addition, the enrichment of DEGs was most 
significant in lysosomes. All these results indicated 
that DEGs were enriched in the collagen-containing 
extracellular matrix, cell-cell junction, actin filament 
organization, cornified envelope, regulation of actin 
cytoskeleton organization, and skin development. 
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Figure 3. GO and KEGG enrichment analysis 
(A)Bubble plot of the GO and KEGG enrichment analysis. (B) Gene network diagram of GO and KEGG pathways. (C-D) Bar graph of GO and 
KEGG enrichment results. Longer bars indicated more enriched DEGs. The red-to-blue color of Z-score signified a strong to weak enrichment. 
(E) Bubble plot of the GO and KEGG enrichment analysis. The size of the bubble represented the quantity of the DEGs. (F) The circle plot of 
GO and KEGG illustrated the scatter map of the LogFC of DEGs. 
 
Function analysis of DEGs by GSEA 

To investigate the function of DEGs further, we 
performed the GSEA utilizing the Reactome pathway 
database. As presented in Figure 4A-F, we found that 
DEGs were highly expressed in Mitotic prometaphase, 
RHO GTPases Activate Formins, Mitotic Metaphase and 
Anaphase, Mitotic Spindle Checkpoint, Separation of 
Sister Chromatids, Cell Cycle Mitotic, and Cell Cycle 
pathways. DEGs were lowly expressed in NABA 
Matrisome, Keratinization, Developmental Biology, and 
Formation of the Cornified Envelope pathways. All these 
results suggested that DEGs were involved in cell cycle 
and mitotic phase regulation. 
 
Establishment and evaluation of predictive models 

To establish an efficient model to predict 
prognosis, LASSO Cox regression analysis was 
performed on DEGs, and the candidate genes with the 
most powerful predictive features were identified 
(Fig. 5B-C). These genes were selected for 
constructing a risk score prognostic model. In 
accordance with the median risk score, melanoma 
patients were assigned to high or low-risk groups. 
The risk score plot and survival state scatter plot 
displayed that the high-risk group possessed lower 
survival and higher risk scores (Figure 5A). 
Furthermore, the heat map showed the expression 

file of 17 DEGs (DBNDD1, ICA1, KLHL13, M6PR, 
SNX11, LASP1, MAD1L1, WNT16, CD99, CYP51A1, 
SEMA3F, ENPP4, NIPAL3, NFYA, FGR, C1orf112, and 
TNMD) in risk groups (Figure 5A). Following that, 
univariate and multivariate Cox regression analysis 
was implemented, and ENPP4 and FGR were 
identified as key genes significantly associated with 
survival. We then established a nomogram for 
survival prediction of patients by integrating ENPP4, 
FGR, and clinical characteristics and scoring each 
feature. According to the actual situation of each 
sample, the total points were obtained by adding the 
scores corresponding to each factor.  

The corresponding scale corresponded to the total 
score, thereby obtaining the 1-year survival 
probability of patients (Figure 5D). Kaplan-Meier 
survival curves displayed that high ENPP4 or FGR 
predicted a longer survival probability, while low 
ENPP4 or FGR predicted a shorter survival 
probability (Figure 5E-F). DCA was further 
performed to measure the net benefits of our model 
and we discovered that compared with a single 
factor, the positive results of all factors demonstrated 
the optimum clinical efficiency (Figure 5G-I). All these 
results suggested that ENPP4 and FGR functioned as 
crucial genes in predicting the prognosis of 
melanoma patients. 
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Figure 4. GSEA of DEGs utilizing the Reactome pathway database 
(A-E) Typical GSEA enrichment plots for DEGs. (F) GSEA enrichment results exhibited in a ridge map. 

 
Figure 5. Establishment and evaluation of predictive models 
(A) Survival probability of melanoma patients with high and low risk scores. (B) The distribution graph of LASSO regression analysis for 
DEGs. (C) Determination of penalty value by LASSO regression analysis. (D) A nomogram for the prognostic risk model. (E-F) Kaplan-Meier 
survival curves of melanoma patients with high and low expression of FGR or ENPP4. (G-I) DCA plots showed the net benefit generated by 
the prediction model. 
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Discussion 

Melanoma is a common malignant skin tumor 
with a high metastatic rate, leading to a high 
mortality rate (28). Despite numerous studies on the 
molecular mechanisms of melanin in recent years 
(29), early diagnosis has not been achieved and 
patient prognosis has not improved. Therefore, it is 
necessary to understand the molecular mechanism 
involved in melanoma progression in depth. With the 
development of bioinformatics, more and more 
attention has been paid to the identification of 
biomarkers that can accurately predict prognosis 
(30). For instance, Zhang et al. suggested that GNGT1 
and NMU can function as the combined diagnosis 
biomarkers of non-small-cell lung cancer (31). Zhou 
et al. revealed an eight-gene signature to predict the 
overall survival of colon cancer patients (32). Lin et 
al. indicated that NUDT1 may be an effective 
prognostic biomarker in clear cell renal cell 
carcinoma (33). The current study aimed to uncover 
novel predictive biomarkers and therapeutic targets 
for melanoma by bioinformatics analysis. 

Herein, we performed a differential analysis of the 
GSE3189 dataset and identified 2132 DEGs between 
melanoma tissues and control tissues, including 1157 
downregulated genes and 975 upregulated genes. 
WGCNA provided module construction and 
correlation analysis to affirm the association between 
genes and melanoma. We found that DEGs were 
divided into 22 gene co-expression modules and 
proved that the blue module was significantly 
associated with melanoma patients. After taking the 
intersection of Limma and WGCNA, we obtained 1408 
genes. Furthermore, GO and KEGG analysis 
demonstrated that genes were enriched in actin 
filament organization, regulation of actin 
cytoskeleton organization, skin development, cell-cell 
junction, collagen-containing extracellular matrix, 
cornified envelope, cadherin binding, structural 
constituent of cytoskeleton, cell adhesion mediator 
activity, and pathway of axon guidance, pathogenic 
escherichia coli infection, and lysosome.  

The GSEA enrichment analysis further proved that 
genes were associated with cell cycle and mitotic 
phase regulation. These findings suggested that these 
genes were closely related to melanoma 
development. Moreover, LASSO regression analysis 
determined 17 genes as the risk factors for melanoma 
patients. The COX regression analysis and a 
nomogram for survival prediction further proved that 
ENPP4 and FGR genes were the optimum prognostic 
genes. We proved that ENPP4 and FGR were notably 
correlated with the survival of melanoma patients. 
Overexpressed ENPP4 and FGR were the protective 
factors related to good prognosis.  

ENPP4 is a procoagulant enzyme on the surface of 
vascular endothelium, belonging to the 
ectonucleotide pyrophosphatase/phosphodiesterase 

family (34). The dysregulation of this family has been 
confirmed to take part in inflammation, cell 
migration, invasion, and angiogenesis (35). Currently, 
there is limited evidence on the biological function of 
ENPP4 in malignant tumors. Nonetheless, the ENPP 
family has been reported to promote the 
tumorigenesis and metastasis of breast cancer and 
glioblastoma (34, 36). Studies have confirmed that 
ENPP4 can inhibit cell proliferation through direct or 
indirect contact with ATP or insulin receptors on the 
surface of tumor cells (37).  

ENPP4 has been reported to catalyze the 
extracellular ATP released from tumor cells and 
decrease the combination of ATP and its receptor 
(37). Furthermore, ENPP4 can contact the insulin 
receptor and suppress its activity (38). In addition, 
ENPP4 might be a biomarker for the prognosis of 
patients with Barrett's esophagus (39). More 
importantly, a bioinformatics analysis proposed by 
Yao et al. pointed out that ENPP4 is downregulated in 
lung squamous cell carcinoma and may be a 
prognostic biomarker for lung squamous cell 
carcinomas (40). In line with the stated study, the 
present research suggested that ENPP4 may be a 
potential prognostic biomarker for melanoma related 
to good prognosis. However, the specific role of 
ENPP4 in melanoma needs further investigation. 

Tyrosine kinase FGR is one of the members of Src 
family kinases (SFKs) family (41). SFKs are a group of 
enzymes that play a key role in cell proliferation, 
adhesion, and differentiation of human cancers (42). 
Studies have confirmed that FGR is involved in 
macrophage activation, insulin resistance, and liver 
steatosis (43). FGR upregulation has been discovered 
to be correlated with aggressive tumor 
characteristics and lower survival time in patients 
with leukemia (44), lymphoma (45), or glioma (46). 
Studies have revealed that FGR is expressed at a high 
level in human acute myeloid leukemia samples, and 
its depletion can suppress cell growth (47, 48). A 
small-molecule inhibitor of FGR has been reported to 
block the radiation fibrosis pathway (49). 
Inconsistent with the aforementioned studies, the 
current research found that high FGR expression 
predicted a good survival of melanoma patients, 
which may be related to tumor heterogeneity. 
Nevertheless, the biological role of FGR in melanoma 
needs to be further explored. 

There are some limitations in this study. Firstly, 
we utilized retrospective data from public databases 
to construct and verify our prognostic model. 
Secondly, we did not perform functional experiments 
on ENPP4 and FGR in vivo or in vitro. Therefore, the 
specific mechanism of ENPP4 and FGR in melanoma 
progression has not been demonstrated. In the 
future, combining ENPP4 and FGR with clinical 
indicators to establish an ideal prediction model will 
be conducive to the early prediction of metastasis 
and metastasis-free survival. In addition, we will also 
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use ENPP4 and FGR in our future research to 
investigate whether they can be used as therapeutic 
targets. 

 
6. Conclusion 

In this study, the key genes ENPP4 and FGR 
involved in the development of melanoma were 
identified by bioinformatics methods, and a 
prognostic risk model was effectively constructed to 
indicate that ENPP4 and FGR could be used as 
prognostic biomarkers for melanoma. The present 
study may provide new insights into the treatment of 
melanoma. 
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