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Abstract 

Background: Small-cell lung cancer (SCLC), which is in the category of intractable cancers, has a low survival rate. It is essential to 
understand the pathophysiological pathways underlying its development to create powerful treatment alternatives for the disease. 
Objectives: This study aimed to classify gene expression data from SCLC and normal lung tissue and identify the key genes responsible 
for SCLC. 
Methods: This study used microarray expression data obtained from SCLC tissue and normal lung tissue (adjacent tissue) from 18 
patients. An Extreme Gradient Boosting (XGBoost) model was established for the classification by five-fold cross-validation. Accuracy 
(AC), balanced accuracy (BAC), sensitivity (Sens), specificity (Spec), positive predictive value (PPV), negative predictive value (NPV), and 
F1 scores were utilized for performance assessment. 
Results: AC, BAC, Sens, Spec, PPV, NPV, and F1 scores from the XGBoost model were 90%, 90%, 80%, 100%, 100%, 83.3%, and 88.9%, 
respectively. Based on variable importance values from the XGBoost, the HIST1H1E, C12orf56, DSTNP2, ADAMDEC1, and HMGB2 genes 
can be considered potential biomarkers for SCLC. 
Conclusion: A machine learning-based prediction method discovered genes that potentially serve as biomarkers for SCLC. After clinical 
confirmation of the acquired genes in the following medical study, their therapeutic use can be established in clinical practice. 
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1. Background 

Lung cancer has become the most prevalent of all 
cancers detected in the past few decades worldwide. 
In 2018, 2.1 million new lung cancer cases accounted 
for 12% of the global lung cancer cases (1, 2). Small-
cell lung cancer (SCLC) and non-small-cell lung 
cancer (NSCLC) are the two broad histological 
classifications of lung cancer tumors. NSCLC accounts 
for 80% to 85% of lung malignancies, with 
adenocarcinoma accounting for around 40%, 
squamous cell carcinoma accounting for 25% to 30%, 
and large cell carcinoma accounting for 10% to 15% 
(3, 4). SCLC represents approximately 15% of all lung 
cancers and is known for its high proliferative rate, 
early metastasis, and poor prognosis. It remains a 
substantial health conundrum (5). SCLC is strongly 
associated with tobacco consumption and exposure, 
and tobacco usage is the primary risk ingredient 
responsible for the high mutational burden of SCLC 
(6, 7). Diminishing smoking habits in Western 
communities has decreased the incidence of SCLC in 
the last 20 years. The primary obstacles to an early 
diagnosis of the disease continue to be the absence of 
particular symptoms in the early stages of tumor 
development and the lack of screening techniques. 
Only one-third of patients are diagnosed in the early 

stages and are potentially suitable for curative 
treatment (5, 6). The five-year survival rate of the 
disease is less than 7% (8). Surgery has limited 
therapeutic benefits for SCLC patients due to the 
early and fast metastasis that is typical of the illness, 
and chemotherapy and radiation treatments have 
short-lived effects. Unlike NSCLC, where genotype-
directed therapies have significantly improved 
treatment outcomes for many patients, SCLC has no 
approved targeted therapies due to the lack of clear 
kinase targets (9, 10). In addition, the re-use of drugs 
in current treatments has not shown significant 
clinical effects (11). Therefore, there is a critical need 
to identify new therapeutic targets and strategies  
for SCLC. A deeper comprehension of the 
pathophysiological pathways underlying the 
beginning and development of SCLC is required to 
create more potent therapy alternatives. According to 
the Stubborn Cancer Research Act (RCRA) of 2013, 
which defines SCLC as "recalcitrant cancer", it is 
imperative to create better preclinical models and 
therapeutic approaches for this condition. For this 
reason, interest in studies to determine the genomic 
infrastructure related to SCLC has increased (12). 
Health authorities hope that the treatment of SCLC 
patients will be improved in the coming years by 
applying target genomic biomarkers and introducing 
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immunotherapy. 
Machine learning (ML) is a branch of artificial 

intelligence (AI) that makes predictions based on 
data. AI/ML algorithms have been widely employed 
in illness diagnosis and clinical decision support 
systems in recent years. It has a wide range of 
applications in the health sector for areas such as 
early detection of genetic diseases and cancer. With 
the availability of massive datasets and increased 
processing power over the past decade, ML 
approaches have attained excellent performance in a 
variety of contexts (13, 14). 

 

2. Objectives 

This study aimed to classify gene expression data 
from patients with SCLC tissue and normal lung 
tissue (adjacent tissue) using the Extreme Gradient 
Boosting (XGBoost) approach and identify significant 
genes that may contribute to the development of 
SCLC. 

 

3. Methods 

3.1. Data Collection and Variables 
In the present study, which is a retrospective 

case-control study, one of the ML methods, XGBoost, 
was used to classify microarray expression data 
obtained from open-access SCLC tissue and normal 
lung tissue and identify new candidate genes that 
could be biomarkers for SCLC. The dataset was 
obtained by taking SCLC tissue and normal lung 
tissue (adjacent tissue) samples from the lungs of 18 
patients. Samples were obtained by surgical 
resection, and gene expression profiling was 
performed by the microarray method. In the dataset 
used in the study, of the 18 patients whose tissue 
samples were taken, 13 were male, and 5 were 
female. In addition, 12 were smokers, while three 
were not. For three patients, this information was not 
available (15). According to the results of the 
experimental (post-hoc) power analysis and the 
findings obtained from the study, the achieved power 
for the analyses performed by taking SCLC tissue 
samples and adjacent tissue samples from 18 patients 
was calculated to be nearly 100%.  

 
3.2. Feature Selection 

Choosing which variables to include in a model is 
a crucial part of any predictive modeling process, and 
data selection is an integral part of any statistical 
modeling process. Determining the most valuable 
elements of the dataset to be utilized in the study 
before dealing with massive datasets and models 
with high computing costs will lead to significant 
efficiency in terms of outcomes. Finding which 
aspects of a dataset affect the dependent variable is 
the goal of feature selection. There is a risk of 
overlearning the data and producing biased findings 

if there are too many explanatory factors and the 
computation time needed to process them is too 
great. Moreover, it is challenging to understand 
models that contain a large number of variables. 
Important influencing factors should be chosen 
before statistical modeling (16). Large datasets can 
overwhelm the effectiveness of most ML and data 
mining techniques, leading to poor outcomes. As a 
result, reducing the dimensionality yields better 
outcomes using these approaches (17). 

Gene expression datasets are massive. Modeling 
analyses require a long time due to massive gene 
expression datasets, and these datasets may lead to 
computational inefficiencies in the studies 
performed. Because of the high dimensionality, the 
model’s performance may suffer. A classification 
method may overfit the training instances and 
undergeneralize novel samples in gene expression 
datasets with many genes. In this study, Lasso, a 
feature selection technique, was utilized to 
overcome these challenges. The Lasso approach 
demands that the sum of the absolute values of the 
model parameters be smaller than a specified value 
(upper limit). The approach accomplishes this by 
penalizing the regression variable coefficients, 
leading some of them to decrease to zero, and is 
particularly useful when the dataset contains a 
large number of variables but few observations. 
Lasso also enhances model interpretability and 
removes the problem of over-learning by deleting 
extraneous variables that are unrelated to the 
response variable (18). 

 
3.3. XGBoost 

In ML, Gradient Boost is a potent tool for 
regression and classification issues where ensemble 
versions of decision trees are typically the result of 
poor predictive models. The boosting-based Gradient 
Boost technique aims to build numerous sequentially 
weak learners and merge them into an elaborate 
model (19). 

One of the most powerful supervised learning 
techniques is gradient boosting machines, and one of 
its applications is XGBoost. It is based on gradient 
boosting and decision tree algorithms, which form its 
basic structure. Its speed and efficiency are far 
beyond those of competing algorithms. In addition to 
its strong predictiveness, XGBoost is 10 times quicker 
than competing algorithms and has many 
regularizations that boost the overall performance 
while mitigating overfitting or overlearning. To 
produce a robust classifier, gradient boosting uses a 
collection of weak classifiers and the boosting 
technique to combine them. The powerful learner is 
educated in an iterative process, commencing with a 
primary learner. XGBoost works on the same 
fundamentals as gradient boosting. The main 
distinction lies in the specifics of their use. It is 
possible to improve the performance of XGBoost by 
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using a variety of regularization approaches to the 
trees’ complexity (20, 21). 

 
3.4. Bioinformatics Analysis  

Gene expression patterns were analyzed for 
samples of SCLC tissue and normal lung tissue using 
differential expression analysis performed via the 
Limma package of the R programming language (22). 
Differential expression analysis is the statistical 
examination of normalized read count data to 
discover quantifiable variations in expression activity 
between treatment arms. A pipeline was built for the 
critical analysis using the R software environment. 
The output includes a table describing the relative 
importance of the genes and a graph showing the 
genes with various expression levels. The most 
reliable genes are those with lower P-values in the 
table of results, which also includes corrected P and 
log2-fold change (log2FC) values. Genes with a 
log2FC of >1 were considered up-regulated, whereas 
those with a log2FC of -1 were considered down-
regulated (23). We used a volcano plot to visually 
emphasize readily noticeable high values concerning 
the key genes. 

 
3.5. Biostatistical Analysis 

The normal distribution of values was determined 
by the Shapiro-Wilk test. The independent samples t-
test was employed to compare the output variable 
and input variables, which consisted of normal lung 
tissue and small cell cancer tissue categories. 
Statistical significance was assumed at a P-value of 
less than 0.05. The study was conducted using IBM’s 
SPSS Statistics (version 25.0). 

 
3.6. Modeling Process 

One of the ML techniques utilized in the modeling 

was XGBoost. In the modeling, the dataset was used 
as 70:30 by dividing the training and test datasets. 
The n-fold cross-validation strategy was used for the 
analyses. The n-fold cross-validation technique 
divides the data into n subsets and then applies the 
model to each subset. The n-part dataset is divided as 
follows: one part is utilized for testing, while the 
remaining n-1 parts are used for model training. The 
cross-validation approach is assessed by looking at 
the median of the results. The modeling in this 
research used five-fold cross-validation. The 
employed performance metrics were accuracy (AC), 
balanced accuracy (BAC), sensitivity (Sens), 
specificity (Spec), positive predictive value (PPV), 
negative predictive value (NPV), and F1 scores. 
Moreover, variable importance scores were 
determined, which revealed how much each input 
variable contributed to the overall explanation of the 
outcome. 

 

4. Results 

A total of 36 tissues were obtained from 18 
patients in the study. Eighteen of the tissues were 
SCLC tissues, and 18 were adjacent normal tissues. 

The mean age of the patients was 56.5 9.85 years. 

The dataset comprised 20,425 expressions. 
According to the findings of the bioinformatics 
analysis, Table 1 contains a summary of the first 10 
results concerning the minimum adjusted P-values. 
Based on the statistics from Table 1, all genes were 
up-regulated. According to Table 1, Log2FC values for 
the UBE2T, NUF2, EXO1, HEPACAM2, ZWINT, ORC6, 
GINS1, TPX2, TOP2A, and TTK genes were 3.69, 4.22, 
3.15, 5.99, 3.21, 3.17, 3.46, 3.90, 4.30, and 4.03, 
respectively.

 

Table 1. Results of the bioinformatics analysis 

ID of Gene Adjusted P-Value* P-Value* t Β Log2FC Gene Name Differential Expression 
29089_at <0.001 <0.001 13.086 24.823 3.69 UBE2T UP 
83540_at <0.001 <0.001 12.589 23.701 4.22 NUF2 UP 
9156_at <0.001 <0.001 12.390 23.243 3.15 EXO1 UP 
253012_at <0.001 <0.001 12.374 23.205 5.99 HEPACAM2 UP 
11130_at <0.001 <0.001 12.330 23.104 3.21 ZWINT UP 
23594_at <0.001 <0.001 12.315 23.069 3.17 ORC6 UP 
9837_at <0.001 <0.001 12.257 22.933 3.46 GINS1 UP 
22974_at <0.001 <0.001 12.055 22.458 3.90 TPX2 UP 
7153_at <0.001 <0.001 11.974 22.268 4.30 TOP2A UP 
7272_at <0.001 <0.001 11.932 22.168 4.03 TTK UP 
*: P<0.001  

 
Figure 1 represents the volcano plot displaying 

the differentially expressed genes. The volcano graph 
compares significance against fold-change in log2 
based on the y- and x-axes, respectively, to determine 
rapid genes with significant expression differences. 

Eighteen expression results were acquired by 
implementing the Lasso method on 20,425 
expression results. Table 2 depicts descriptive 
statistics for the chosen genes in terms of the 

categories. Table 2 shows that statistically significant 
differences were found across groups for all genes 
(P<0.05). The results from the XGBoost model 
performance metrics are detailed in Table 3. 

AC, BAC, Sens, Spec, PPV, NPV, and F1 scores from 
the XGBoost model were 90%, 90%, 80%, 100%, 
100%, 83.3%, and 88.9%, respectively. The 
performance criteria values are plotted for the 
XGBoost model in Figure 2.  
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Table 4 shows the variable importance values of 
the input variables that best explain the output 

variable as a result of the modeling. Figure 3 shows 
the graph of variable importance values obtained 

 
 

 
 

Figure 1. Volcano plot 
 

Table 2. Descriptive statistics for input variables 

ID of Gene Gene Name 

Group 

P* Cancer Control 

Mean±SD Mean±SD 

115749_at C12orf56 5.583±1.276 3.426±0.138 <0.001 

171220_at DSTNP2 5.141±0.238 5.678±0.274 <0.001 

27299_at ADAMDEC1 8.96±1.425 5.603±1.27 <0.001 

3008_at HIST1H1E 4.703±0.534 3.683±0.219 <0.001 

3148_at HMGB2 12.268±0.657 10.38±0.365 <0.001 

400360_at C15orf54 2.688±0.16 2.855±0.136 0.002 

5319_at PIK3C3 4.823±1.486 8.863±0.701 <0.001 

5372_at PMM1 7.059±0.434 7.931±0.362 <0.001 

5454_at POU3F2 6.296±1.636 3.583±0.192 <0.001 

55282_at LRRC36 6.16±0.478 8.004±0.592 <0.001 

55766_at H2AFJ 5.742±0.604 6.671±0.163 <0.001 

55775_at TDP1 7.096±0.504 5.912±0.25 <0.001 

7126_at TNFAIP1 7.981±0.242 8.588±0.206 <0.001 

7161_at TP73 4.837±0.352 4.249±0.179 <0.001 

8354_at HIST1H3I 3.488±0.446 2.835±0.149 <0.001 

90141_at EFCAB11 6.116±0.222 5.751±0.172 <0.001 

9108_at MTMR7 3.978±0.859 2.776±0.182 <0.001 

97_at ACYP1 10.118±1.313 7.523±0.184 <0.001 

SD: Standard deviation, *: Independent samples t-test 
 

Table 3. Performance metrics of the XGBoost model 

Performance Metrics Value (%) 

Accuracy 90.0 

Balanced Accuracy 90.0 

Sensitivity 80.0 

Specificity 100 

Positive predictive value 100 

Negative predictive value 83.3 

F1-score 88.9 
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because of the model. The HIST1H1E gene had the 
highest predictor importance of 100%, followed by 

C12orf56 at 99.64%, DSTNP2 at 42.24%, ADAMDEC1 
at 36.10, and HMGB2 at 19.43%.

 

 

 
 

Figure 2. Graph of values for performance criteria obtained from XGBoost models 

 
Table 4. Variable importance values related to the XGBoost model 

Gene Name Importance Values (%) 
HIST1H1E 100 
C12orf56 99.649 
DSTNP2 42.247 
ADAMDEC1 36.106 
HMGB2 19.438 

 
 

 
 

Figure 3. Graphic of gene importance values for predicting the output variable 

 

5. Discussion 

SCLC accounts for 15% of new lung cancer 
diagnoses. It is a particularly aggressive cancer with 
rapid development and early hematogenous 
dissemination. At the time of diagnosis, 
approximately one-third of patients had limited-stage 
disease, which can be treated with chemoradiation, 
whereas the remaining patients had an extensive-
stage illness, which is normally treated with palliative 
chemotherapy. Although most patients show an 
initial response to chemotherapy and/or 
radiotherapy, virtually all patients relapse with 
resistant cancer, and the five-year overall survival 
rate is 5%-10% (24-27). 

Comprehensive genome-wide profiling has 
significantly increased our understanding of the 
genomic landscapes of numerous cancer types over 
the last decade, leading to the identification of novel 
predictive/prognostic biomarkers and therapeutic 
targets (28, 29). However, in comparison to many 
other solid tumors, only a few studies have been 
conducted to investigate the genetic landscape of 
SCLC (30, 31). Genomic studies are inconclusive due 
to the lack of suitable tumor tissues, as most SCLC 
patients are not treated with surgical resection. 
Therefore, there is a need to determine the genomic 
structure of SCLS, reveal genomic profiles related to 
the disease, and explain the underlying genomic 
mechanisms (24). For this reason, differential 
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expression analysis was performed in the current 
study to identify genes that can be potential 
biomarkers for SCLS by comparing SCLS tissue to 
normal tissue. Afterward, XGBoost, one of the ML 
methods, was used to determine the most important 
genes associated with SCLS. In the dataset examined 
in the current study, genomic data from samples 
acquired from the lungs of 18 patients with SCLC 
tissue and normal lung tissue (adjacent tissue) were 
used for related analyses. The samples were 
obtained by surgical resection, and the microarray 
method made the gene expression profile. According 
to the Log2FC values used to define the expression 
fold changes between the two groups from the 
findings of the bioinformatics analysis (detailed in 
Table 2), the UBE2T gene has 12.90-fold higher gene 
expression in SCLC tissue than in normal lung tissue. 
Similarly, NUF2 gene has 18.63-fold, EXO1 gene has 
8.87-fold, HEPACAM2 gene has 63.55-fold, ZWINT 
gene has 9.25-fold, ORC6 gene has 9.00-fold, GINS1 
gene has 11.00-fold, TPX2 gene has 14.92-fold, 
TOP2A gene has 19.69-fold, and TTK gene has 
16.33-fold higher gene expression. Because of their 
sheer quantity, gene expression data provide unique 
challenges for modeling. Therefore, the most crucial 
genes linked with the output variable were chosen 
using the Lasso variable selection approach before 
modeling using the current dataset. To construct 
XGBoost, 18 genes were chosen using the Elastic Net 
technique. The AC, BAC, Sens, Spec, PPV, NPV, and 
F1 scores from the XGBoost model were 90%, 90%, 
80%, 100%, 100%, 83.3%, and 88.9%, respectively. 
The performance metrics indicated that the 
proposed XGBoost could correctly classify the two 
groups of tissue. According to the variable 
importance obtained from the XGBoost method, 
HIST1H1E, C12orf56, DSTNP2, ADAMDEC1, and 
HMGB2 genes can be used as potential predictive 
biomarkers for SCLC. The statistical analysis 
revealed that 18 genes acquired through variable 
selection exhibited statistically significant variations 
between the two groups. The proposed 
bioinformatic model for the detection of expression 
profiles in the current small sample of lung cancer 
data revealed that the upregulation of HIST1H1E 
mRNA is the highest predictor of cancer in humans. 
HIST1H1E is a gene that encodes histone H1.4, one 
of 11 H1 linker histones. HIST1H1E protein has a 
role in the formation of higher chromatin structures 
and the accessibility of proteins, which are related 
to chromatin remodeling or histone modifications 
(32). HIST1H1E mutations are mainly related to 
Rahman Syndrome, but the processes it involves 
have been implicated in cancer pathogenesis. Lee et 
al. reported that HIST1H1E expression levels were 
low in endometrial cancer cell lines compared to 
immortalized endometrium epithelial cells and were 
upregulated in response to calcitriol treatment in 
cancerous cells, suggesting possible antitumor 

activity (33). On the other hand, the bioinformatic 
data suggested conflicting reports depending on the 
type of cancer. For instance, Kumar et al. (also 
reviewed in Chang et al.) (34) suggested that 
HIST1H1E acted as an oncogene in diffuse large-B 
cell lymphoma, while it was proposed as a tumor 
suppressor gene in liver hepatocellular carcinoma 
(35). In another report based on the TCGA data, 
HIST1H1E was overexpressed in esophageal cancer 
and associated with a poor prognosis (36). Here we 
analyzed differentially expressed genes in an SCLC 
cohort compared to adjacent normal tissues and 
established HIST1H1E expression level as a reliable 
biomarker using our ML method, XGBoost. 

A previous study showed that the C12orf56 gene 
was differentially expressed in lung squamous cell 
carcinoma, which is one of the lung cancer types 
(37). It was determined that the C12orf56 gene was 
associated with cancer and showed differential 
expression in cancer by the upregulation of this 
gene in the case of ovarian cancer (38). It is also 
known that the ADAMDEC1 gene plays an 
important role in the pathogenesis of many known 
diseases, including cancer. In one study, in 
bioinformatic analyses performed to determine the 
functions of the ADAMDEC1 gene in NSCLC, it was 
found that this gene was up-regulated in NSCL and 
associated with poor prognosis in the disease 
through the PI3K/AKT pathway (39). Another study 
found that HMGB2 may be a biomarker that reflects 
the disease characteristics and prognosis of NSCLC 
and is useful for improving clinical efficacy in the 
case of NSCLC (40). 

The present study has several limitations. The 
first is the inability to obtain the necessary 
demographic and clinical data of the patients. This is 
a limitation for studies using such datasets. In 
addition, since the patients did not have clinical 
information, the integration of the obtained genes 
with other information was not possible. 

 

6. Conclusion 

Using gene expression data from SCLC tissue and 
normal lung tissue (adjacent tissue), this study 
discovered possible genetic biomarkers for SCLC. 
Future, more in-depth investigations will evaluate 
the accuracy of these genes, permitting the 
development of targeted therapies and elucidating 
their clinical relevance. The discovery and 
application of these gene-based therapeutic 
approaches for this disease, which is determined 
according to the RCRA and is in the category of 
intractable cancer, will be very valuable and will 
shed light on reducing mortality and revealing the 
preclinic stages of the disease. Therefore, target 
gene-directed therapies can be set out for SCLC, 
which does not have an approved treatment due to 
the lack of clear genomic targets, and can be 
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obtained with a good response from the treatment, 
as in NSCLS. 

 

Acknowledgments 

We would like to thank Prof. Dr. Cemil Çolak for 
the support. 

 

Footnotes 

Conflicts of Interest: The authors declare no 
conflict of interest. 

 
References 

1. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. 
Global cancer statistics 2018: GLOBOCAN estimates of 
incidence and mortality worldwide for 36 cancers in 185 
countries. CA Cancer J Clin. 2018;68(6):394-424. doi: 
10.3322/caac.21492. [PubMed: 30207593]. 

2. Schabath MB, Cote ML. Cancer progress and priorities: lung 
cancer. Cancer Epidemiol Biomarkers Prev. 2019;28(10):1563-
79. doi: 10.1158/1055-9965.EPI-19-0221. [PubMed: 
31575553]. 

3. Wahbah M, Boroumand N, Castro C, El-Zeky F, Eltorky M. 
Changing trends in the distribution of the histologic types of 
lung cancer: a review of 4,439 cases. Ann Diagn Pathol. 
2007;11(2):89-96. doi: 10.1016/j.anndiagpath.2006.04.006. 
[PubMed: 17349566]. 

4. Rami-Porta R, Bolejack V, Giroux DJ, Chansky K, Crowley J, 
Asamura H, et al. The IASLC lung cancer staging project: the 
new database to inform the eighth edition of the TNM 
classification of lung cancer. J Thorac Oncol. 2014;9(11):1618-
24. doi: 10.1097/JTO.0000000000000334. [PubMed: 
25436796]. 

5. Tsoukalas N, Aravantinou-Fatorou E, Baxevanos P, Tolia M, 
Tsapakidis K, Galanopoulos M, et al. Advanced small cell lung 
cancer (SCLC): new challenges and new expectations. Ann 
Transl Med. 2018;6(8):145. doi: 10.21037/atm.2018.03.31. 
[PubMed: 29862234].  

6. Rudin CM, Brambilla E, Faivre-Finn C, Sage J. Small-cell lung 
cancer. Nat Rev Dis Primers. 2021;7(1):3. doi: 
10.1038/s41572-020-00235-0. [PubMed: 33446664]. 

7. Pleasance ED, Stephens PJ, O'Meara S, McBride DJ, Meynert A, 
Jones D, et al. A small-cell lung cancer genome with complex 
signatures of tobacco exposure. Nature. 2010;463(7278):184-
90. doi: 10.1038/nature08629. [PubMed: 20016488]. 

8. Karachaliou N, Pilotto S, Lazzari C, Bria E, de Marinis F, Rosell 
R. Cellular and molecular biology of small cell lung cancer: an 
overview. Transl Lung Cancer Res. 2016;5(1):2-15. doi: 
10.3978/j.issn.2218-6751.2016.01.02. [PubMed: 26958489]. 

9. Shtivelman E, Hensing T, Simon GR, Dennis PA, Otterson GA, 
Bueno R, et al. Molecular pathways and therapeutic targets 
in lung cancer. Oncotarget. 2014;5(6):1392-433. doi: 
10.18632/oncotarget.1891. [PubMed: 24722523]. 

10. Byers LA, Rudin CM. Small cell lung cancer: where do 
we go from here? Cancer. 2015;121(5):664-72. doi: 
10.1002/cncr.29098. [PubMed: 25336398]. 

11. Kalemkerian GP. Advances in pharmacotherapy of small cell 
lung cancer. Expert Opin Pharmacother. 2014;15(16):2385-96. 
doi: 10.1517/14656566.2014.957180. [PubMed: 25255939]. 

12. Drapkin BJ, Rudin CM. Advances in small-cell lung cancer 
(SCLC) translational research. Cold Spring Harb Perspect Med. 
2021;11(4):a038240. doi: 10.1101/cshperspect.a038240. 
[PubMed: 32513672].  

13. Polikar R. Ensemble learning.  Ensemble machine learning: 
Springer; 2012. p. 1-34. 

14. Akman M, Genç Y, Ankarali H. Random Forests Yöntemi ve 
Saglik Alaninda Bir Uygulama/Random forests methods and an 
application in health science. Turk Klin Biyoistatistik. 

2011;3(1):36-48. 
15. Cai L, Liu H, Huang F, Fujimoto J, Girard L, Chen J, et al. Cell-

autonomous immune gene expression is repressed in 
pulmonary neuroendocrine cells and small cell lung cancer. 
Commun Biol. 2021;4(1):314. doi: 10.1038/s42003-021-
01842-7. [PubMed: 33750914].  

16. Saeys Y, Inza I, Larrañaga P. A review of feature selection 
techniques in bioinformatics. Bioinformatics. 2007;23(19):2507-
17. doi: 10.1093/bioinformatics/btm344. [PubMed: 17720704]. 

17. Fodor IK. A survey of dimension reduction techniques. 
Lawrence Livermore National; 2002. 

18. Fonti V. Research Paper in Business Analytics: Feature 
Selection with LASSO. Amsterdam: VU Amsterdam; 2017. 

19. Wang J, Li P, Ran R, Che Y, Zhou Y. A short-term photovoltaic 
power prediction model based on the gradient boost decision 
tree. Applied Sci. 2018;8(5):689. doi: 10.3390/app8050689. 

20. Dikker J. Boosted tree learning for balanced item 
recommendation in online retail. Eindhoven University of 
Technology; 2017. 

21. Salam Patrous Z. Evaluating XGBoost for user classification by 
using behavioral features extracted from smartphone sensors. 
KTH Royal Institute of Technology; 2018. 

22. Smyth GK. Limma: linear models for microarray data.  
Bioinformatics and computational biology solutions using R 
and Bioconductor: Springer; 2005. p. 397-420. 

23. Yan H, Zheng G, Qu J, Liu Y, Huang X, Zhang E, et al. 
Identification of key candidate genes and pathways in multiple 
myeloma by integrated bioinformatics analysis. J Cell Physiol. 
2019;234(12):23785-97. doi: 10.1002/jcp.28947. [PubMed: 
31215027].  

24. Nong J, Gong Y, Guan Y, Yi X, Yi Y, Chang L, et al. Circulating 
tumor DNA analysis depicts subclonal architecture and 
genomic evolution of small cell lung cancer. Nat Commun. 
2018;9(1):1-8. doi: 10.1038/s41467-018-05327-w 

25. Murray N, Coy P, Pater JL, Hodson I, Arnold A, Zee B, et al. 
Importance of timing for thoracic irradiation in the combined 
modality treatment of limited-stage small-cell lung cancer. The 
national cancer institute of canada clinical trials group. J Clin 
Oncol. 1993;11(2):336-44. doi: 10.1200/JCO.1993.11.2.336. 
[PubMed: 8381164]. 

26. Johnson BE, Grayson J, Makuch RW, Linnoila RI, Anderson MJ, 
Cohen MH, et al. Ten-year survival of patients with small-cell 
lung cancer treated with combination chemotherapy with or 
without irradiation. J Clin Oncol. 1990;8(3):396-401. doi: 
10.1200/JCO.1990.8.3.396. [PubMed: 2155310].  

27. Lassen U, Osterlind K, Hansen M, Dombernowsky P, Bergman 
B, Hansen HH. Long-term survival in small-cell lung cancer: 
posttreatment characteristics in patients surviving 5 to 18+ 
years--an analysis of 1,714 consecutive patients. J Clin Oncol. 
1995;13(5):1215-20. doi: 10.1200/JCO.1995.13.5.1215. 
[PubMed: 7738624].  

28. CGAR. Comprehensive molecular profiling of lung 
adenocarcinoma. Nature. 2014;511(7511):543. doi: 
10.1038/nature13385. [PubMed: 25079552]. 

29. CGA. Comprehensive molecular characterization of human 
colon and rectal cancer. Nature. 2012;487(7407):330-7. doi: 
10.1038/nature11252. [PubMed: 22810696].  

30. George J, Lim JS, Jang SJ, Cun Y, Ozretić L, Kong G, et al. 
Comprehensive genomic profiles of small cell lung cancer. 
Nature. 2015;524(7563):47-53. doi: 10.1038/nature14664.  

31. Rudin CM, Durinck S, Stawiski EW, Poirier JT, Modrusan Z, 
Shames DS, et al. Comprehensive genomic analysis identifies 
SOX2 as a frequently amplified gene in small-cell lung cancer. 
Nat Genet. 2012;44(10):1111-6. doi: 10.1038/ng.2405. 
[PubMed: 22941189].  

32. Tatton-Brown K, Loveday C, Yost S, Clarke M, Ramsay E, 
Zachariou A, et al. Mutations in epigenetic regulation genes are a 
major cause of overgrowth with intellectual disability. Am J Hum 
Genet. 2017;100(5):725-36. doi: 10.1016/j.ajhg.2017.03.010. 
[PubMed: 28475857]. 

33. Lee LR, Teng PN, Nguyen H, Hood BL, Kavandi L, Wang G, et al. 
Progesterone enhances calcitriol antitumor activity by 
upregulating vitamin D receptor expression and promoting 
apoptosis in endometrial cancer cells. Cancer Prev Res (Phila). 

https://doi.org/10.3322/caac.21492
https://pubmed.ncbi.nlm.nih.gov/30207593/
https://doi.org/10.1158/1055-9965.epi-19-0221
https://pubmed.ncbi.nlm.nih.gov/31575553/
https://doi.org/10.1016/j.anndiagpath.2006.04.006
https://pubmed.ncbi.nlm.nih.gov/17349566/
https://doi.org/10.1097/jto.0000000000000334
https://pubmed.ncbi.nlm.nih.gov/25436796/
https://doi.org/10.21037/atm.2018.03.31
https://pubmed.ncbi.nlm.nih.gov/29862234/
https://doi.org/10.1038/s41572-020-00235-0
https://pubmed.ncbi.nlm.nih.gov/33446664/
https://doi.org/10.1038/nature08629
https://pubmed.ncbi.nlm.nih.gov/20016488/
https://doi.org/10.3978/j.issn.2218-6751.2016.01.02
https://doi.org/10.3978/j.issn.2218-6751.2016.01.02
https://pubmed.ncbi.nlm.nih.gov/26958489/
https://doi.org/10.18632/oncotarget.1891
https://pubmed.ncbi.nlm.nih.gov/24722523/
https://doi.org/10.1002/cncr.29098
https://pubmed.ncbi.nlm.nih.gov/25336398/
https://doi.org/10.1517/14656566.2014.957180
https://pubmed.ncbi.nlm.nih.gov/25255939/
https://doi.org/10.1101/cshperspect.a038240
https://pubmed.ncbi.nlm.nih.gov/32513672/
https://doi.org/10.1038/s42003-021-01842-7
https://doi.org/10.1038/s42003-021-01842-7
https://pubmed.ncbi.nlm.nih.gov/33750914/
https://doi.org/10.1093/bioinformatics/btm344
https://pubmed.ncbi.nlm.nih.gov/17720704/
https://doi.org/10.3390/app8050689
https://doi.org/10.1002/jcp.28947
https://pubmed.ncbi.nlm.nih.gov/31215027/
https://doi.org/10.1038/s41467-018-05327-w
https://doi.org/10.1200/jco.1993.11.2.336
https://pubmed.ncbi.nlm.nih.gov/8381164/
https://doi.org/10.1200/jco.1990.8.3.396
https://pubmed.ncbi.nlm.nih.gov/2155310/
https://doi.org/10.1200/jco.1995.13.5.1215
https://pubmed.ncbi.nlm.nih.gov/7738624/
https://doi.org/10.1038/nature13385
https://pubmed.ncbi.nlm.nih.gov/25079552/
https://doi.org/10.1038/nature11252
https://pubmed.ncbi.nlm.nih.gov/22810696/
https://doi.org/10.1038/nature14664
https://doi.org/10.1038/ng.2405
https://pubmed.ncbi.nlm.nih.gov/22941189/
https://doi.org/10.1016/j.ajhg.2017.03.010
https://pubmed.ncbi.nlm.nih.gov/28475857/


 Sarihan ME et al. 

 

8                                                                                                                                                                                                  Iran Red Crescent Med J. 2023; 25(8):e2618. 
 

2013;6(7):731-43. doi: 10.1158/1940-6207.CAPR-12-0493. 
[PubMed: 23682076].  

34. Chang S, Yim S, Park H. The cancer driver genes IDH1/2, 
JARID1C/ KDM5C, and UTX/ KDM6A: crosstalk between 
histone demethylation and hypoxic reprogramming in cancer 
metabolism. Exp Mol Med. 2019;51(6):1-17. doi: 
10.1038/s12276-019-0230-6. [PubMed: 31221981]. 

35. Kumar RD, Searleman AC, Swamidass SJ, Griffith OL, Bose R. 
Statistically identifying tumor suppressors and oncogenes 
from pan-cancer genome-sequencing data. Bioinformatics. 
2015;31(22):3561-8. doi: 10.1093/bioinformatics/btv430. 
[PubMed: 26209800].  

36. Dai J, Reyimu A, Sun A, Duoji Z, Zhou W, Liang S, et al. 
Establishment of prognostic risk model and drug sensitivity 
based on prognostic related genes of esophageal cancer. Sci 
Rep. 2022;12(1):8008. doi: 10.1038/s41598-022-11760-1. 
[PubMed: 35568702].  

37. Zhang F, Chen X, Wei K, Liu D, Xu X, Zhang X, et al. 
Identification of key transcription factors associated with lung 

squamous cell carcinoma. Med Sci Monit. 2017;23:172-206. 
doi: 10.12659/msm.898297. [PubMed: 28081052]. 

38. Yang X, Zhu S, Li L, Zhang L, Xian S, Wang Y, et al. Identification 
of differentially expressed genes and signaling pathways in 
ovarian cancer by integrated bioinformatics analysis. Onco 
Targets Ther. 2018;11:1457-74. doi: 10.2147/OTT.S152238. 
[PubMed: 29588600]. 

39. Zhu W, Shi L, Gong Y, Zhuo L, Wang S, Chen S, et al. 
Upregulation of ADAMDEC1 correlates with tumor progression 
and predicts poor prognosis in non‐small cell lung cancer 
(NSCLC) via the PI3K/AKT pathway. Thorac Cancer. 
2022;13(7):1027-39. doi: 10.1111/1759-7714.14354. 
[PubMed: 35178875].  

40. Lou N, Zhu T, Qin D, Tian J, Liu J. High-mobility group box 2 
reflects exacerbated disease characteristics and poor 
prognosis in non-small cell lung cancer patients. Ir J Med Sci. 
2022;191(1):155-62. doi: 10.1007/s11845-021-02549-8. 
[PubMed: 33635447].  

 

https://doi.org/10.1158/1940-6207.capr-12-0493
https://pubmed.ncbi.nlm.nih.gov/23682076/
https://doi.org/10.1038/s12276-019-0230-6
https://pubmed.ncbi.nlm.nih.gov/31221981/
https://doi.org/10.1093/bioinformatics/btv430
https://pubmed.ncbi.nlm.nih.gov/26209800/
https://doi.org/10.1038/s41598-022-11760-1
https://pubmed.ncbi.nlm.nih.gov/35568702/
https://doi.org/10.12659/msm.898297
https://pubmed.ncbi.nlm.nih.gov/28081052/
https://doi.org/10.2147/ott.s152238
https://pubmed.ncbi.nlm.nih.gov/29588600/
https://doi.org/10.1111/1759-7714.14354
https://pubmed.ncbi.nlm.nih.gov/35178875/
https://doi.org/10.1007/s11845-021-02549-8
https://pubmed.ncbi.nlm.nih.gov/33635447/

