Document Type : Review articles

Authors

1 Department of Surgery, College of Medicine, Jouf University, Sakaka, Saudi Arabia

2 Internal Medicine Department, Faculty of Medicine, Cairo University, Giza, Egypt

3 Clinical Pathology Department, Medical Research Institute, Alexandria University, Alexandria, Egypt

4 Clinical Pathology Department, Clinical Microbiology Unit, Faculty of Medicine, Cairo University, Giza, Egypt

5 Tropical Medicine Department, Faculty of Medicine, Alexandria University, Alexandria, Egypt

6 Medical Physiology Department, Faculty of Medicine, Assiut University, Assiut, Egypt

7 Pathology Department, Faculty of Medicine, Al-Azhar University, Cairo, Egypt

8 Diagnostic and Interventional Radiology Department, Theodor Bilharz Research Institute, Giza, Egypt

9 Clinical Pharmacy Department, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt

10 Forensic Medicine and Toxicology Department, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt

11 Pediatric Department, King Abdelaziz University, Jeddah, Saudi Arabia

12 Dermatology Department, Ibn Sina Faculty of Medicine, Jeddah, Saudi Arabia

13 Medicinal Chemistry Department, Faculty of Pharmacy, Jouf University, Sakaka, Saudi Arabia ; Medicinal Chemistry Department, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt

14 Pharmacology Department, Medical College and Health Science Research Unit, Jouf University, Sakaka, Saudi Arabia

Abstract

Although it was initially believed that the coronavirus disease 2019 (COVID-19) only attacked the respiratory system, reports over time demonstrated that this disease could attack the gastrointestinal tract (GIT) as well. The predominant presenting symptoms in patients infected with COVID-19 were gastrointestinal (GI), resulting in GI pathological changes. While clinicians concerns are mostly related to respiratory system manifestations, GI symptoms should be monitored and managed appropriately.
This review summarizes the essential information about COVID-19 GIT infection in terms of pathogenesis, major pathological changes, microbiological bases of infection, the possibility of feco-oral transmission, the severity of associated symptoms, the major radiological findings, the impact on GI surgery, the role of therapeutic agents in induction or magnification of GI symptoms, and a pitfall on the nutritional supplementation in COVID-19 patients.

Keywords

  1. Cheung KS, Hung IFN, Chan PPY, Lung KC, Tso E, Liu R, et al. Gastrointestinal Manifestations of SARS-CoV-2 Infection and Virus Load in Fecal Samples From a Hong Kong Cohort: Systematic Review and Meta-analysis. Gastroenterology. 2020;159(1):81-95. doi: 10.1053/j.gastro.2020.03.065. [PubMed: 32251668].
  2. Su S, Shen J, Zhu L, Qiu Y, He JS, Tan JY, et al. Involvement of digestive system in COVID-19: manifestations, pathology, management and challenges. Therap Adv Gastroenterol. 2020;13:1-12. doi: 10.1177/1756284820934626. [PubMed: 32595762].
  3. Li LY, Wu W, Chen S, Gu JW, Li XL, Song HJ, et al. Digestive system involvement of novel coronavirus infection: Prevention and control infection from a gastroenterology perspective. J Dig Dis. 2020;21(4):199-204. doi: 10.1111/1751-2980.12862. [PubMed: 32267098].
  4. Rodriguez-Nakamura RM, Gonzalez-Calatayud M, Martinez Martinez AR. Acute mesenteric thrombosis in two patients with COVID-19. Two cases report and literature review. Int J Surg Case Rep. 2020;76:409-14. doi: 10.1016/j.ijscr.2020.10.040. [PubMed: 33083204].
  5. Hu B, Guo H, Zhou P, Shi ZL. Characteristics of SARS-CoV-2 and COVID-19. Nat Rev Microbiol. 2020;19(3):1-14. doi: 10.1038/s41579-020-00459-7. [PubMed: 33024307].
  6. Lu R, Zhao X, Li J, Niu P, Yang B, Wu H, et al. Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and
  7. receptor binding. Lancet. 2020;395(10224):565-74. doi: 10.1016/S0140-6736(20)30251-8.
  8. Astuti I, Ysrafil. Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2): An overview of viral structure and host response. Diabetes Metab Syndr. 2020;14(4):407-12. doi: 10.1016/j.dsx.2020.04.020. [PubMed: 32335367].
  9. Duffy S. Why are RNA virus mutation rates so damn high? PLoS Biol. 2018;16(8):1-6. doi: 10.1371/journal.pbio.3000003. [PubMed: 30102691].
  10. Korber B, Fischer WM, Gnanakaran S, Yoon H, Theiler J, Abfalterer W, et al. Tracking changes in SARS-CoV-2 Spike: evidence that D614G increases infectivity of the COVID-19 virus. Cell. 2020;182(4):812-27. doi: 10.1016/j.cell.2020.06.043.
  11. Becerra‐Flores M, Cardozo T. SARS‐CoV‐2 viral spike G614 mutation exhibits higher case fatality rate. Int J Clin
  12. Pract. 2020;74(8):1-10. doi: 10.1111/ijcp.13525. [PubMed: 32374903].
  13. Wang R, Chen J, Gao K, Hozumi Y, Yin C, Wei GW. Characterizing SARS-CoV-2 mutations in the United States. Res Sq. 2020;3:1-31. doi: 10.21203/rs.3.rs-49671/v1. [PubMed: 32818213].
  14. Yi C, Sun X, Ye J, Ding L, Liu M, Yang Z, et al. Key residues of the receptor binding motif in the spike protein of SARS-CoV-2 that interact with ACE2 and neutralizing antibodies. Cell Mol Immunol. 2020;17(6):621-30. doi: 10.1038/s41423-020-0458-z. [PubMed: 32415260].
  15. Escalera A, Gonzalez-Reiche AS, Aslam S, Mena I, Laporte M, Pearl RL, et al. Mutations in SARS-CoV-2 variants of concern link to increased spike cleavage and virus transmission. Cell Host Microbe. 2022;30(3):373-87. doi: 10.1016/j.chom.2022.01.006. [PubMed: 35150638].
  16. Villapol S. Gastrointestinal symptoms associated with COVID-19: impact on the gut microbiome. Transl Res. 2020;226:57-69. doi: 10.1016/j.trsl.2020.08.004. [PubMed: 32827705].
  17. Ye Q, Wang B, Zhang T, Xu J, Shang S. The mechanism and treatment of gastrointestinal symptoms in patients with COVID-19. Am J Physiol Gastrointest Liver Physiol. 2020;
  18. (2):245-52. doi: 10.1152/ajpgi.00148.2020. [PubMed: 32639848].
  19. Kopel J, Perisetti A, Gajendran M, Boregowda U, Goyal H. Clinical Insights into the Gastrointestinal Manifestations of COVID-19. Dig Dis Sci. 2020;65(7):1939-39. doi: 10.1007/s10620-020-06362-8. [PubMed: 32447742].
  20. Darby WJ, McNutt KW, Todhunter EN. Niacin. Nutr Rev. 1975;33(10):289-97.
  21. Wei PF. Diagnosis and treatment protocol for novel coronavirus pneumonia (Trial Version 7). Chin Med J. 2020;133(9):
  22. -95. doi: 10.1097/CM9.0000000000000819. [PubMed: 32358325].
  23. Chen N, Zhou M, Dong X, Qu J, Gong F, Han Y, et al. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. Lancet. 2020;395(10223):507-13. doi: 10.1016/S0140-6736(20)30211-7. [PubMed: 32007143].
  24. Wong SH, Lui RN, Sung JJ. Covid-19 and the digestive system. J Gastroenterol Hepatol. 2020;35(5):744-8. doi: 10.1111/jgh.15047. [PubMed: 32215956].
  25. Alqahtani SA, Schattenberg JM. Liver injury in COVID-19: The current evidence. United European Gastroenterol J. 2020;8(5):509-19. doi: 10.1177/2050640620924157. [PubMed: 32450787].
  26. Chand N, Sanyal AJ. Sepsis‐induced cholestasis. Hepatology. 2007;45(1):230-41. doi: 10.1002/hep.21480. [PubMed: 17187426].
  27. Liu Q, Wang RS, Qu G. Macroscopic autopsy findings in a patient with COVID-19. J Forensic Med. 2020;36:1-3.
  28. Tian Y, Rong L, Nian W, He Y. Review article: gastrointestinal features in COVID-19 and the possibility of faecal
  29. transmission. Aliment Pharmacol Ther. 2020;51(9):843-51. doi: 10.1111/apt.15731. [PubMed: 32222988].
  30. Xiao F, Tang M, Zheng X, Liu Y, Li X, Shan H. Evidence for gastrointestinal infection of SARS-CoV-2. Gastroenterology. 2020;158(6):1831-3. doi: 10.1053/j.gastro.2020.02.055. [PubMed: 32142773]
  31. Bhayana R, Som A, Li MD, Carey DE, Anderson MA, Blake
  32. MA, et al. Abdominal imaging findings in COVID-19:
  33. preliminary observations. Radiology. 2020;297(1):207-15. doi: 10.1148/radiol.2020201908. [PubMed: 32391742].
  34. Falasca L, Nardacci R, Colombo D, Lalle E, Di Caro A, Nicastri E, et al. Postmortem Findings in Italian Patients With COVID-19: A Descriptive Full Autopsy Study of Cases With and Without Comorbidities. J Infect Dis. 2020;222(11):1807-15. doi: 10.1093/infdis/jiaa578. [PubMed: 32914853].
  35. Tian S, Xiong Y, Liu H, Niu L, Guo J, Liao M, et al. Pathological study of the 2019 novel coronavirus disease (COVID-19) through postmortem core biopsies. Mod Pathol. 2020;33(6):1007-14. doi: 10.1038/s41379-020-0536-x. [PubMed: 32291399].
  36. Schaller T, Hirschbühl K, Burkhardt K, Braun G, Trepel M, Märkl B, et al. Postmortem examination of patients with COVID-19. JAMA. 2020;323(24):2518-20. doi: 10.1001/jama.2020.8907. [PubMed: 32437497].
  37. Elsoukkary SS, Mostyka M, Dillard A, Berman DR, Ma LX, Chadburn A, et al. Autopsy findings in 32 patients with COVID-19: a single-institution experience. Pathobiology. 2020;88(1):55-67. doi: 10.1159/000511325. [PubMed: 32942274].
  38. Zhong P, Xu J, Yang D, Shen Y, Wang L, Feng Y, et al. COVID-19-associated gastrointestinal and liver injury: clinical features and potential mechanisms. Signal Transduct Target Ther. 2020;5(1):1-8. doi: 10.1038/s41392-020-00373-7. [PubMed: 33139693].
  39. Pan L, Mu M, Yang P, Sun Y, Wang R, Yan J, et al. Clinical characteristics of COVID-19 patients with digestive symptoms in Hubei, China: a descriptive, cross-sectional, multicenter study. Am J Gastroenterol. 2020;115(5):766-73. doi: 10.14309/ajg.0000000000000620. [PubMed: 32287140].
  40. Cholankeril G, Podboy A, Aivaliotas V, Pham EA, Tarlow B, Spencer S, et al. Association of Digestive Symptoms and Hospitalization in Patients with SARS-CoV-2 Infection. MedRxiv. 2020;28:l-12. doi: 10.1101/2020.04.23.20076935. [PubMed: 32511634].
  41. Lin L, Jiang X, Zhang Z, Huang S, Zhang Z, Fang Z, et al. Gastrointestinal symptoms of 95 cases with SARS-CoV-2 infection. Gut. 2020;69(6):997-1001. doi: 10.1136/gutjnl-2020-321013. [PubMed: 32241899].
  42. Toscano G, Palmerini F, Ravaglia S, Ruiz L, Invernizzi P, Cuzzoni MG, et al. Guillain–Barre syndrome associated with SARS-CoV-2. N Engl J Med. 2020;382(26):2574-76. doi: 10.1056/NEJMc2009191. [PubMed: 32302082].
  43. Samanta J, Gupta R, Singh MP, Patnaik I, Kumar A, Kochhar R. Coronavirus disease 2019 and the pancreas. Pancreatology. 2020;20(8):1567-75. doi: 10.1016/j.pan.2020.10.035. [PubMed: 33250089].
  44. Gubatan J, Levitte S, Patel A, Balabanis T, Sharma A, Jones E, et al. Prevalence, risk factors and clinical outcomes of COVID-19 in patients with a history of pancreatitis in Northern California. Gut. 2020;70(2):440-1. doi: 10.1136/gutjnl-2020-321772. [PubMed: 32493828].
  45. Nitsche CJ, Jamieson N, Lerch MM, Mayerle JV. Drug induced pancreatitis. Best Pract Res Clin Gastroenterol. 2010;24(2):143-55. doi: 10.1016/j.bpg.2010.02.002. [PubMed: 20227028].
  46. Zu ZY, Jiang MD, Xu PP, Chen W, Ni QQ, Lu GM, et al. Coronavirus disease 2019 (COVID-19): a perspective from China. Radiology. 2020;296(2):15-25. doi: 10.1148/radiol.2020200490. [PubMed: 32083985].
  47. Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020;395(10223):497-506. doi: 10.1016/S0140-6736(20)30183-5. [PubMed: 31986264].
  48. Mao R, Liang J, Shen J, Ghosh S, Zhu LR, Yang H, et al. Implications of COVID-19 for patients with pre-existing digestive diseases. Lancet Gastroenterol Hepatol. 2020;5(5):
  49. -8. doi: 10.1016/S2468-1253(20)30076-5. [PubMed: 32171057].
  50. Zhang C, Shi L, Wang FS. Liver injury in COVID-19: management and challenges. Lancet Gastroenterol Hepatol. 2020;5(5):
  51. -30. doi: 10.1016/S2468-1253(20)30057-1. [PubMed: 32145190].
  52. Liu Y, Yan LM, Wan L, Xiang TX, Le A, Liu JM, et al. Viral dynamics in mild and severe cases of COVID-19. Lancet Infect Dis. 2020;20(6):656-57. doi: 10.1016/S1473-3099(20)30232-2. [PubMed: 32199493].
  53. Jia HP, Look DC, Shi L, Hickey M, Pewe L, Netland J, et al. ACE2 receptor expression and severe acute respiratory syndrome coronavirus infection depend on differentiation of human airway epithelia. J Virol. 2005;79(23):14614-21. doi: 10.1128/JVI.79.23.14614-14621.2005. [PubMed: 16282461].
  54. Li M, Yao D, Zeng X, Kasakovski D, Zhang Y, Chen S, et al. Age related human T cell subset evolution and senescence. Immun Ageing. 2019;16(1):1-7. doi: 10.1186/s12979-019-0165-8. [PubMed: 31528179].
  55. Liu J, Ji H, Zheng W, Wu X, Zhu JJ, Arnold AP, et al. Sex differences in renal angiotensin converting enzyme 2 (ACE2) activity are 17β-oestradiol-dependent and sex chromosome-independent. Biol Sex Differ. 2010;1(1):1-11. doi: 10.1186/2042-6410-1-6. [PubMed: 21208466].
  56. Wenham C, Smith J, Morgan R. COVID-19: the gendered impacts of the outbreak. Lancet. 2020;395(10227):846-8. doi: 10.1016/S0140-6736(20)30526-2. [PubMed: 32151325].
  57. Patel SK, Velkoska E, Burrell LM. Emerging markers in cardiovascular disease: Where does angiotensin‐converting enzyme 2 fit in? Clin Exp Pharmacol Physiol. 2013;40(8):551-9. doi: 10.1111/1440-1681.12069. [PubMed: 23432153].
  58. Ouali SE, Achkar JP, Lashner B, Regueiro M. Gastrointestinal manifestations of COVID-19. Cleve Clin J Med. 2021;1-5. doi: 10.3949/ccjm.87a.ccc049. [PubMed: 32554734].
  59. Viennois E, Zhao Y, Merlin D. Biomarkers of inflammatory bowel disease: from classical laboratory tools to personalized medicine. Inflamm Bowel Dis. 2015;21(10):2467-74. doi: 10.1097/MIB.0000000000000444. [PubMed: 25985250].
  60. Zuo Y, Zuo M, Yalavarthi S, Gockman K, Madison JA, Shi H, et al. Neutrophil extracellular traps and thrombosis in COVID-19. MedRxiv. 2020;5;1-16. doi: 10.1101/2020.04.30.20086736. [PubMed: 32511553].
  61. Silvin A, Chapuis N, Dunsmore G, Goubet AG, Dubuisson A, Derosa L, et al. Elevated calprotectin and abnormal myeloid cell subsets discriminate severe from mild COVID-19.
  62. Cell. 2020;182(6):1401-18. doi: 10.1016/j.cell.2020.08.002. [PubMed: 32810439]
  63. Shi H, Zuo Y, Yalavarthi S, Gockman K, Zuo M, Madison JA, et al. Neutrophil calprotectin identifies severe pulmonary disease in COVID-19. J Leukoc Biol.. 2020;109(1):67-72. doi: 10.1002/JLB.3COVCRA0720-359R.
  64. Bourgonje AR, von Martels JZ, de Vos P, Faber KN, Dijkstra G. Increased fecal calprotectin levels in Crohn’s disease correlate with elevated serum Th1-and Th17-associated cytokines. PloS One. 2018;13(2):1-12. doi: 10.1371/journal.pone.0193202. [PubMed: 29466406]
  65. Mostafa-Hedeab G. ACE2 as Drug Target of COVID-19 Virus Treatment, Simplified Updated Review. Rep Biochem Mol Biol. 2020;9(1):97-105. doi: 10.29252/rbmb.9.1.97. [PubMed: 32821757].
  66. Kavallaris M, Marshall GM. Proteomics and disease: opportunities and challenges. Med J Aust. 2005;182(11):575-9. doi: 10.5694/j.1326-5377.2005.tb06817.x.
  67. Zhao N, Wu L, Cheng Y, Zheng H, Hu P, Hu C, et al. The effect of emergency surgery on acute abdomen patients with COVID-19 pneumonia: a retrospective observational study. Aging. 2020;12(15):15771-83. doi: 10.18632/aging.103839. [PubMed: 32805726].
  68. Romero J, Valencia S, Guerrero A. Acute Appendicitis During Coronavirus Disease 2019 (COVID-19): Changes in Clinical Presentation and CT Findings. J Am Coll Radiol. 2020;17(8):1011-3. doi: 10.1016/j.jacr.2020.06.002. [PubMed: 32610104].
  69. Ekbatani MS, Hassani SA, Tahernia L, Yaghmaei B, Mahmoudi S, Navaeian A, et al. Atypical and novel presentations of Coronavirus Disease 2019: a case series of three
  70. children. Br J Biomed Sci. 2021;78(1): 47-52. doi: 10.1080/09674845.2020.1785102. [PubMed: 32552415].
  71. Qasim Agha O, Berryman R. Acute Splenic Artery Thrombosis and Infarction Associated with COVID-19 Disease. Case reports in critical care. 2020;2020:1-4. doi: 10.1155/2020/8880143. [PubMed: 32934849].
  72. De Simone B, Chouillard E, Di Saverio S, Pagani L, Sartelli M, Biffl WL, et al. Emergency surgery during the COVID-19 pandemic: what you need to know for practice. Ann R Coll Surg Engl. 2020;102(5):323-32. doi: 10.1308/rcsann.2020.0097. [PubMed: 32352836].
  73. American College of S. COVID-19: Guidance for Triage of Non-Emergent Surgical Procedures. American College of Surgeons; 2020.p.1-38.
  74. de Leeuw RA, Burger NB, Ceccaroni M, Zhang J, Tuynman J, Mabrouk M, et al. COVID-19 and Laparoscopic Surgery: Scoping Review of Current Literature and Local Expertise. JMIR Public Health Surveill. 2020;6(2):18928. doi: 10.2196/18928. [PubMed: 32406853].
  75. Felsenreich DM, Gachabayov M, Dong XD, Cianchi F, Bergamaschi R. Considerations on robotic colorectal surgery during a COVID-19 pandemic. Minerva Chir. .2020;75(4):213-5. doi: 10.23736/S0026-4733.20.08348-0.
  76. Liang W, Guan W, Chen R, Wang W, Li J, Xu K, et al. Cancer patients in SARS-CoV-2 infection: a nationwide analysis in China. Lancet Oncol. 2020;21(3):335-7. doi: 10.1016/S1470-2045(20)30096-6. [PubMed: 32066541].
  77. Tuech JJ, Gangloff A, Fiore FD, Michel P, Brigand C, Slim K, et al. Strategy for the Practice of Digestive surgery during the COVID-19 epidemic. J Visc Surg. 2020;157(3):7-12. doi: 10.1016/j.jviscsurg.2020.03.008. [PubMed: 32249098].
  78. Goldberg-Stein S, Fink A, Paroder V, Kobi M, Yee J, Chernyak V. Abdominopelvic CT findings in patients with novel coronavirus disease 2019 (COVID-19). Abdom Radiol. 2020;45(9):2613-23. doi: 10.1007/s00261-020-02669-2. [PubMed: 32761402].
  79. Revzin MV, Raza S, Srivastava NC, Warshawsky R, D’agostino C, Malhotra A, et al. Multisystem Imaging Manifestations of COVID-19, Part 2: From Cardiac Complications to Pediatric Manifestations. RadioGraphics. 2020;40(7):1866-92. doi: 10.1148/rg.2020200195. [PubMed: 33136488].
  80. Samanta J, Dhar J, Khaliq A, Kochhar R. 2019 novel coronavirus infection: gastrointestinal manifestations. J Dig Endosc. 2020;11(1):13-18. doi: 10.1055/s-0040-1712077.
  81. Zhang F, Yin Z, Tang X. Clinical analysis of 260 patients with severe acute respiratory syndrome in Guangzhou areas. Chin J Anim Infect Dis. 2003;19(7):801-2.
  82. Kociolek LK, Gerding DN. Breakthroughs in the treatment and prevention of Clostridium difficile infection. Nat Rev Gastroenterol Hepatol. 2016;13(3):150-60. doi: 10.1038/nrgastro.2015.220. [PubMed: 26860266].
  83. Gautret P, Lagier JC, Parola P, Meddeb L, Mailhe M, Doudier B, et al. Hydroxychloroquine and azithromycin as a treatment of COVID-19: results of an open-label non-randomized
  84. clinical trial. Int J Antimicrob Agents. 2020:56(1):1-7. doi: 10.1016/j.ijantimicag.2020.105949. [PubMed: 32205204].
  85. Goldman JD, Lye DC, Hui DS, Marks KM, Bruno R, Montejano R, et al. Remdesivir for 5 or 10 days in patients with severe Covid-19. N Engl J Med. 2020;383(19):1827-37. doi: 10.1056/NEJMoa2015301. [PubMed: 32459919]
  86. Deng L, Li C, Zeng Q, Liu X, Li X, Zhang H, et al. Arbidol combined with LPV/r versus LPV/r alone against Corona Virus Disease 2019: A retrospective cohort study. J Infect. 2020;81(1):1-5. doi: 10.1016/j.jinf.2020.03.002. [PubMed: 32171872].
  87. Gao J, Tian Z, Yang X. Breakthrough: Chloroquine phosphate has shown apparent efficacy in treatment of COVID-19 associated pneumonia in clinical studies. Biosci Trends. 2020;14(1):72-3. doi: 10.5582/bst.2020.01047. [PubMed: 32074550].
  88. Gandolfini I, Delsante M, Fiaccadori E, Zaza G, Manenti L, Degli Antoni A, et al. COVID‐19 in kidney transplant recipients. Am J Transplant. 2020;20(7):1941-43. doi: 10.1111/ajt.15891. [PubMed: 32233067].
  89. Slobodnick A, Shah B, Krasnokutsky S, Pillinger MH. Update
  90. on colchicine, 2017. Rheumatology. 2018;57(1):4-11. doi: 10.1093/rheumatology/kex453. [PubMed: 29272515].
  91. Caly L, Druce JD, Catton MG, Jans DA, Wagstaff KM. The FDA-approved drug ivermectin inhibits the replication of
  92. SARS-CoV-2 in vitro. Antiviral Res. 2020;178:1-5. doi: 10.1016/j.antiviral.2020.104787. [PubMed: 32251768].
  93. Sulkowski MS, Thomas DL, Chaisson RE, Moore RD. Hepatotoxicity associated with antiretroviral therapy in adults infected with human immunodeficiency virus and the role of hepatitis C or B virus infection. JAMA. 2000;283(1):74-80. doi: 10.1001/jama.283.1.74. [PubMed: 10632283].
  94. Li F. Structure, function, and evolution of coronavirus spike proteins. Annu Rev Virol. 2016;3:237-61. doi:10.1146/annurev-virology-110615-042301.
  95. Wilkins T, Sequoia J. Probiotics for gastrointestinal conditions: a summary of the evidence. Am Fam Physician. 2017;96(3):170-8. [PubMed: 28762696].
  96. Ceccarelli G, Scagnolari C, Pugliese F, Mastroianni CM, d'Ettorre G. Probiotics and COVID-19. Lancet Gastroenterol Hepatol. 2020;5(8):721-2. doi: 10.1016/S2468-1253(20)30196-5. [PubMed: 32673604].
  97. Luo H, Tang QL, Shang YX, Liang SB, Yang M, Robinson N, et al. Can Chinese medicine be used for prevention of corona virus disease 2019 (COVID-19)? A review of historical classics, research evidence and current prevention programs. Chin J Integr Med. 2020;26(4):243-50. doi: 10.1007/s11655-020-3192-6. [PubMed: 32065348].
  98. Aguila EJT, Lontok MAD, Aguila EJT. Role of probiotics in the COVID‐19 pandemic. Aliment Pharmacol Ther. 2020;52(5):931. doi: 10.1111/apt.15931.
  99. Drake PL, Hazelwood KJ. Exposure-Related Health Effects of Silver and Silver Compounds: A Review. Ann Occup Hyg. 2005;49(7):575-85. doi: 10.1093/annhyg/mei019. [PubMed: 15964881].
  100. Ruan Q, Yang K, Wang W, Jiang L, Song J. Clinical predictors of mortality due to COVID-19 based on an analysis of data of 150 patients from Wuhan, China. Intensive Care Med. 2020;46(5):846-8. doi: 10.1007/s00134-020-05991-x. [PubMed: 32125452].
  101. Calder PC. Immunonutrition in surgical and critically ill patients. Br J Nutr. 2007;98(1):133-9. doi: 10.1017/S0007114507832909. [PubMed: 17922951].
  102. Bourgonje AR, Abdulle AE, Timens W, Hillebrands JL, Navis GJ, Gordijn SJ, et al. Angiotensin-converting enzyme 2 (ACE2), SARS-CoV-2 and the pathophysiology of coronavirus disease 2019 (COVID-19). J Pathol. 2020;251(3):228-48. doi: 10.1002/path.5471. [PubMed: 32418199].
  103. Ceriello A, Standl E, Catrinoiu D, Itzhak B, Lalic NM, Rahelic D, et al. Issues for the management of people with diabetes and COVID-19 in ICU. Cardiovasc Diabetol. 2020;19(1):1-7. doi: 10.1186/s12933-020-01089-2. [PubMed: 32690029].
  104. Perlot T, Penninger JM. ACE2–From the renin–angiotensin system to gut microbiota and malnutrition. Microbes Infect. 2013;15(13):866-73. doi: 10.1016/j.micinf.2013.08.003. [PubMed: 23962453].
  105. Iwata-Yoshikawa N, Okamura T, Shimizu Y, Hasegawa H, Takeda M, Nagata N. TMPRSS2 contributes to virus spread and immunopathology in the airways of murine models after coronavirus infection. J Virol. 2019;93(6):1815-18. doi: 10.1128/JVI.01815-18. [PubMed: 30626688].
  106. Gou W, Fu Y, Yue L, Chen GD, Cai X, Shuai M, et al. Gut microbiota may underlie the predisposition of healthy individuals to COVID-19. J Genet Genomics. 2020;48(9):792-802. doi: 10.1016/j.jgg.2021.04.002.
  107. Zhang ZL, Hou YL, Li DT, Li FZ. Laboratory findings of COVID-19: a systematic review and meta-analysis. Scand J Clin Lab Invest. 2020;80(6):441-7. doi: 10.1080/00365513.2020.1768587. [PubMed: 32449374].
  108. Wang D, Hu B, Hu C, Zhu F, Liu X, Zhang J, et al. Clinical Characteristics of 138 Hospitalized Patients With 2019 Novel Coronavirus-Infected Pneumonia in Wuhan, China. JAMA. 2020;323(11):1061-69. doi: 10.1001/jama.2020.1585. [PubMed: 32031570].
  109. Klok FA, Kruip MJHA, van der Meer NJM, Arbous MS, Gommers D, Kant KM, et al. Confirmation of the high cumulative incidence of thrombotic complications in critically ill ICU patients with COVID-19: An updated analysis. Thromb
  110. Res. 2020;191:148-50. doi: 10.1016/j.thromres.2020.04.041. [PubMed: 32381264].
  111. Cao B, Wang Y, Wen D, Liu W, Wang J, Fan G, et al. A trial of lopinavir–ritonavir in adults hospitalized with severe
  112. Covid-19. N Engl J Med. 2020;382(19):1787-99. doi: 10.1056/NEJMoa2001282. [PubMed: 32187464].
  113. FDA U. Fact sheet for health care providers: emergency use authorization (EUA) of remdesivir (GS-5734™). 2020:1-36.
  114. Li Y, Xie Z, Lin W, Cai W, Wen C, Guan Y, et al. An exploratory randomized, controlled study on the efficacy and safety of lopinavir/ritonavir or arbidol treating adult patients hospitalized with mild/moderate COVID-19 (ELACOI). MedRxiv. 2020:1-33. doi: 10.1101/2020.03.19.20038984.
  115. Kalil AC. Treating COVID-19—off-label drug use, compassionate use, and randomized clinical trials during pandemics. JAMA. 2020;323(19):1897-8. doi: 10.1001/jama.2020.4742. [PubMed: 32208486].
  116. Gorski A, Międzybrodzki R, Żaczek M, Borysowski J. Phages in the fight against COVID-19? Future Microbiol. 2020;15:1095-1100 doi:10.2217/fmb-2020-0082.
  117. Angelidis C, Kotsialou Z, Kossyvakis C, Vrettou A-R, Zacharoulis A, Kolokathis F, et al. Colchicine pharmacokinetics and mechanism of action. Curr Pharm Des. 2018;24(6):659-63. doi: 10.2174/1381612824666180123110042. [PubMed: 29359661].
  118. Regas VHL, Culla MTD, Bellfill RL. Adverse reactions of drugs specifically used for treatment of SARS-CoV-2 infection. Med
  119. Clin. 2020;155(10):448-53. doi: 10.1016/j.medcle.2020.06.026. [PubMed: 33521297]
  120. Hossen MS, Barek MA, Jahan N, Islam MS. A Review on Current Repurposing Drugs for the Treatment of COVID-19: Reality and Challenges. SN Compr Clin Med. 2020;2(10):1777-89. doi: 10.1007/s42399-020-00485-9. [PubMed: 32904710].
  121. Xu X, Han M, Li T, Sun W, Wang D, Fu B, et al. Effective treatment of severe COVID-19 patients with tocilizumab.
  122. Proc Natl Acad Sci U S A.2020;117(20):10970-5. doi: 10.1073/pnas.2005615117.
  123. Gritti G, Raimondi F, Ripamonti D, Riva I, Landi F, Alborghetti L, et al. IL-6 signalling pathway inactivation with
  124. siltuximab in patients with COVID-19 respiratory failure: an observational cohort study. MedRxiv. 2020:1-31. doi: 10.1101/2020.04.01.20048561.
  125. Jing X, Ji P, Schrieber SJ, Fletcher EP, Sahajwalla C. Update on Therapeutic Protein–Drug Interaction: Information in Labeling. Clin Pharmacokinet. 2020;59(1):25-36. doi: 10.1007/s40262-019-00810-z. [PubMed: 31583608].