Document Type : Research articles

Authors

urmia university of medical sciences

Abstract

Background: Colorectal cancer (CRC) is one of the major leading causes of cancer related death throughout the world. Among various therapeutic strategies for CRC, neoadjuvant radiotherapy, targeted therapy, and chemotherapy are the main techniques to destroy cancerous cells.
Objectives: The main purpose of this study was to evaluate the efficacy of radiotherapy in combination with silver graphene quantum dot (SQD) and Resveratrol (Res) on the HCT-116 colorectal cancer (CRC) cells.
Methods: Minimally cytotoxic concentrations of SQD (50µm) with Res (0.5xIC50 and 0.25xIC50) and radiation (2Gy of x-ray radiation) were selected for double and triple treatments. The Acridine Orange/Ethidium Bromide staining was used to detect apoptosis. The Caspase-3 mRNA expression level was measured by the real-time PCR method. In addition, cyclooxygenase 2 (COX-2) protein expression was studied by the western blot technique. Similarly, the superoxide dismutase (SOD), glutathione peroxidase (GPX) enzyme activities, and malondialdehyde (MDA) levels were determined in this study.
Results: In this study, after 24 h, triple combined cases showed decreased cell viability versus double and single treatments (P<0.05). Moreover, cellular viability was decreased in the SQD-radiation and SQD-Res treated cells, compared to the related single treatments (P<0.05). The increased apoptotic cells were observed in the triple combination group, compared to the double and single treated cases. Triple combination treatment exhibited decreased GPX activity versus single treatments (P<0.05). The triple combined case showed reduced SOD activity than the radiation and SQD single treatments. A remarkable increase in the MDA concentration was observed in the triple combination versus single treatments. According to the results, in double and triple treatments, upregulation of Caspase-3 mRNA was presented versus double and single treatments. There was a decreased COX-2 protein expression level in triple combinatorial cases versus double and single treated cells.
Conclusion: These findings proposed that SQD in combination with Res and radiation showed significant anti-cancer effects on CRC in vitro.

Keywords

  1. Mohammadian M, Zeynali-Moghaddam S, Khadem Ansari MH, Rasmi Y, Fathi Azarbayjani A, Kheradmand F. Dihydropyrimidine Dehydrogenase Levels in Colorectal Cancer Cells Treated with a Combination of Heat Shock Protein 90 Inhibitor and Oxaliplatin or Capecitabine. Adv Pharm Bull. 2019;9(3):439-444. [PMID: 31592113] doi: 10.15171/apb.2019.052.
  2. Van der Jeught K, Xu HC, Li YJ, Lu XB, Ji G. Drug resistance and new therapies in colorectal cancer. World J Gastroenterol. 2018;24(34):3834-3848. [PMID: 30228778] doi: 10.3748/wjg.v24.i34.3834.
  3. Moradi Z, Mohammadian M, Saberi H, Ebrahimifar M, Mohammadi Z, Ebrahimpour M, et ak. Anti-cancer effects of chemotherapeutic agent; 17-AAG, in combined with gold nanoparticles and irradiation in human colorectal cancer cells. Daru. 2019;27(1):111-119. [PMID: 30835081] doi: 10.1007/s40199-019-00251-w.
  4. Geng L, Wang J. Molecular effectors of radiation resistance in colorectal cancer. Precis Radiat Oncol. 2017;1:27-33.‏
  5. Rosa S, Connolly C, Schettino G, Butterworth KT, Prise KM. Biological mechanisms of gold nanoparticle radiosensitization. Cancer Nanotechnol. 2017;8(1):2. [PMID: 28217176]. doi: 10.1186/s12645-017-0026-0.
  6. da Costa Araldi IC, Bordin FPR, Cadoná FC, Barbisan F, Azzolin VF, Teixeira CF, et al. The in vitro radiosensitizer potential of resveratrol on MCF-7 breast cancer cells. Chem Biol Interact. 2018;282:85-92. [PMID: 29336987] doi: 10.1016/j.cbi.2018.01.013.
  7. Zoberi I, Bradbury CM, Curry HA, Bisht KS, Goswami PC, Roti Roti JL, et al. Radiosensitizing and anti-proliferative effects of resveratrol in two human cervical tumor cell lines. Cancer Lett. 2002;175(2):165-73. [PMID: 11741744] doi: 10.1016/s0304-3835(01)00719-4.
  8. Kma L. Synergistic effect of resveratrol and radiotherapy in control of cancers. Asian Pac J Cancer Prev. 2013;14(11):6197-208. [PMID: 24377505] doi: 10.7314/apjcp.2013.14.11.6197.
  9. Honari M, Shafabakhsh R, Reiter RJ, Mirzaei H, Asemi Z. Resveratrol is a promising agent for colorectal cancer prevention and treatment: focus on molecular mechanisms. Cancer Cell Int. 2019;19:180. [PMID: 31341423] doi: 10.1186/s12935-019-0906-y.
  10. Zhao J, Liu P, Ma J, Li D, Yang H, Chen W, et al. Enhancement of Radiosensitization by Silver Nanoparticles Functionalized with Polyethylene Glycol and Aptamer As1411 for Glioma Irradiation Therapy. Int J Nanomedicine. 2019;14:9483-9496. [PMID: 31819445] doi: 10.2147/IJN.S224160.
  11. Liu P, Jin H, Guo Z, Ma J, Zhao J, Li D, et al. Silver nanoparticles outperform gold nanoparticles in radiosensitizing U251 cells in vitro and in an intracranial mouse model of glioma. Int J Nanomedicine. 2016;11:5003-5014. [PMID: 27757033] doi: 10.2147/IJN.S115473.
  12. Xu R, Ma J, Sun X, Chen Z, Jiang X, Guo Z, et al. Ag nanoparticles sensitize IR-induced killing of cancer cells. Cell Res. 2009;19(8):1031-4. [PMID: 19621033] doi: 10.1038/cr.2009.89.
  13. Huang P, Yang DP, Zhang C, Lin J, He M, Bao L, et al. Protein-directed one-pot synthesis of Ag microspheres with good biocompatibility and enhancement of radiation effects on gastric cancer cells. Nanoscale. 2011;3(9):3623-6. [PMID: 21842073] doi: 10.1039/c1nr10586h.
  14. Swanner J, Mims J, Carroll DL, Akman SA, Furdui CM, Torti SV, et al. Differential cytotoxic and radiosensitizing effects of silver nanoparticles on triple-negative breast cancer and non-triple-negative breast cells. Int J Nanomedicine. 2015;10:3937-53. [PMID: 26185437] doi: 10.2147/IJN.S80349.
  15. Jiang H, Wang H, De Ridder M. Targeting antioxidant enzymes as a radiosensitizing strategy. Cancer Lett. 2018;438:154-164. [PMID: 30223069] doi: 10.1016/j.canlet.2018.09.004.
  16. Chou TC. Drug combination studies and their synergy quantification using the Chou-Talalay method. Cancer Res. 2010;70(2):440-6. [PMID: 20068163] doi: 10.1158/0008-5472.CAN-09-1947.
  17. Su XY, Liu PD, Wu H, Gu N. Enhancement of radiosensitization by metal-based nanoparticles in cancer radiation therapy. Cancer Biol Med. 2014;11(2):86-91. [PMID: 25009750] doi: 10.7497/j.issn.2095-3941.2014.02.003.
  18. Franco-Molina MA, Mendoza-Gamboa E, Sierra-Rivera CA, Gómez-Flores RA, Zapata-Benavides P, Castillo-Tello P, et al. Antitumor activity of colloidal silver on MCF-7 human breast cancer cells. J Exp Clin Cancer Res. 2010;16:29(1):18. [PMID: 21080962] doi: 10.1186/1756-9966-29-148.
  19. Asharani PV, Hande MP, Valiyaveettil S. Anti-proliferative activity of silver nanoparticles. BMC Cell Biol. 2009;17:10:65. [PMID: 19761582] doi: 10.1186/1471-2121-10-65.
  20. Shvedova AA, Castranova V, Kisin ER, Schwegler-Berry D, Murray AR, Gandelsman VZ, et al. Exposure to carbon nanotube material: assessment of nanotube cytotoxicity using human keratinocyte cells. J Toxicol Environ Health A. 2003;66:1909-1926. [PMID: 14514433] doi: 10.1080/713853956.
  21. Liu P, Huang Z, Chen Z, Xu R, Wu H, Zang F, et al. Silver nanoparticles: a novel radiation sensitizer for glioma? Nanoscale. 2013;5:11829-11836. [PMID: 24126539] doi: 10.1039/c3nr01351k.
  22. Baatout S, Derradji H, Jacquet P, Ooms D, Michaux A, Mergeay M. Enhanced radiation-induced apoptosis of cancer cell lines after treatment with resveratrol. Int J Mol Med. 2004;13(6):895-902. [PMID: 15138632].
  23. Cheki M, Yahyapour R, Farhood B, Rezaeyan A, Shabeeb D, Amini P, et al. COX-2 in Radiotherapy: A Potential Target for Radioprotection and Radiosensitization. Curr Mol Pharmacol. 2018;11(3):173-183. [PMID: 29468988]. doi: 10.2174/1874467211666180219102520.
  24. Lu R, Yang D, Cui D, Wang Z, Guo L. Egg white-mediated green synthesis of silver nanoparticles with excellent biocompatibility and enhanced radiation effects on cancer cells. Int J Nanomedicine. 2012;7:2101-7. [PMID: 22619546]. doi: 10.2147/IJN.S29762.
  25. Zheng Q, Yang H, Wei J, Tong J-l, Shu Y-q. The role and mechanisms of nanoparticles to enhance radiosensitivity in hepatocellular cell. Biomed Pharmacother. 2013;67:569–75. [PMID: 23786887] doi: 10.1016/j.biopha.2013.04.003.
  26. Elshawy OE, Helmy EA, Rashed LA. Preparation, characterization and in vitro evaluation of the antitumor activity of the biologically synthesized silver nanoparticles. Adv Nano. 2016;5:149-66. doi: 10.4236/anp.2016.52017
  27. Liu Y, Zhang P, Li F, Jin X, Li J, Chen W, et al. Metal-based NanoEnhancers for Future Radiotherapy: Radiosensitizing and Synergistic Effects on Tumor Cells. Theranostics. 2018; 8(7):1824-1849. [PMID: 29556359] doi: 10.7150/thno.22172.
  28. Khoshbin AR, Mohamadabadi F, Vafaeian F, Babania A, Akbarian S, Khandozi R,et al. The effect of radiotherapy and chemotherapy on osmotic fragility of red blood cells and plasma levels of malondialdehyde in patients with breast cancer. Rep Pract Oncol Radiother. 2015;20(4):305-8. [PMID: 26109919] doi: 10.1016/j.rpor.2014.11.002.
  29. Baranwal M, Singh SK, Nigam A, Singh N, Singh N. Oxidant and antioxidant activity alteration in anaplastic astrocytomas patients following radiation therapy. JMSCR. 2014;2:1194-1203.
  30. Crohns M, Saarelainen S, Kankaanranta H, Moilanen E, Alho H, Kellokumpu-Lehtinen P. Local and systemic oxidant/antioxidant status before and during lung cancer radiotherapy. Free Radic Res. 2009;43(7):646-57. [PMID: 19444690] doi: 10.1080/10715760902942824.
  31. Sorda-Pomianek K,  Michalak K,  Swiątek P,  Poła A,  Palko-Łabuz A,  Wesołowska O. Increased Lipid Peroxidation, Apoptosis and Selective Cytotoxicity in Colon Cancer Cell Line LoVo and Its Doxorubicin-Resistant Subline LoVo/Dx in the Presence of Newly Synthesized Phenothiazine Derivatives . Biomed Pharmacother. 2018;106:624-636. [PMID: 29990852] doi: 10.1016/j.biopha.2018.06.170.
  32. Mohammedan Roshan N, Salehabadi S, Kooshki Forooshani M, Nikoozadeh A. Accuracy of digital image analysis (DIA) of borderline HER2 immunohistochemistry in invasive ductal carcinoma. Int J Cancer Manag. 2020;13(9): e101179. doi: 10.5812/ijcm.101179