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Abstract 

Background: Neural tube defects (NTDs) are classed as multifactorial birth defects of the brain and spinal cord that arise during embryonic 
development. Although the etiology is not well understood, NTDs are reported to be prevented by maternal folic acid supplementation before 
and during early pregnancy.  
Objectives: This meta-analysis study aimed to assess the association between fetal and maternal methylenetetrahydrofolate reductase 
(MTHFR) C677T and methionine synthase reductase (MTRR) A66G polymorphisms with the risk of NTDs. 
Methods: The PubMed, Scopus, and Springer Link databases were searched (from March 2000 to November 2020) for the literature on the 
association between MTHFR C677T and MTRR A66G polymorphisms with the risk of NTDs.  
Results: In total, 33 studies were reviewed in the present study, and it was revealed that, unlike MTRR A66G polymorphism, MTHFR C677T 
was statistically associated with the risk of NTDs in the overall population. The results of subgroup analysis showed that the Indian 
subcontinent subgroup with maternal MTHFR C677T polymorphism and the European subgroup with fetal MTHFR C677T polymorphism 
was significantly susceptible to NTDs. 
Conclusion: The obtained results revealed that, unlike MTRR A66G, maternal and fetal MTHFR C677T polymorphisms were significantly 
associated with NTDs. Subgroup analysis also demonstrated that folic acid deprivation can be considered the main cause of MTHFR C677T 
polymorphism in some areas. 
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1. Background 

The neural tube defects (NTDs) are among the 
most important congenital malformations occurring 
during the early stage of embryogenesis. NTDs occurs 
by a failure in neural tube closure and its prevalence 
is about 1 per 1000 birth (1, 2). The NTDs are 
classified into two major groups including 
anencephaly and spina bifida. The precise mechanism 
of NTDs is not fully elucidated; however, it has been 
suggested that environmental and genetic factors are 
involved in its incidence (3). The results of previous 
studies revealed that folic acid deficiency and high 
levels of homocysteine might be associated with the 
risk of NTDs (4, 5). Based on epidemiological studies, 
hyperhomocysteinemia is an emerging risk factor  
for cardiovascular diseases and neural tube 
abnormalities.  In addition, the consumption of folic 
acid supplementation by pregnant women reduces 
the risk of NTDs in fetuses. Considering the role of 
folic acid in the occurrence of NTDs, the enzymes 
involved in folate metabolism might be important  
in NTDs pathogenesis and single nucleotide 
polymorphisms (SNPs) (4, 6, 7). One of these 
enzymes is methylenetetrahydrofolate reductase 

(MTHFR) which prompts the conversion of 5,10-
methylenetetrahydrofolate to 5-methyltetrahydrofolate 
and has a key role in folic acid metabolism (8). This 
enzyme has also a pivotal role in the synthesis of DNA 
and RNA, and protein metabolism (9). MTHFR gene is 
located on chromosome 1 (1p36.3) and has been 
documented for 14 rare and one common mutation 
(C677T, rs1801133) (10). C677T polymorphism is a 
point mutation at nucleotide 677 of the MTHFR gene 
which triggers the conversion of C nucleotide to T 
nucleotide and substitution of alanine with valine in 
MTHFR protein (8, 11).  

Methionine synthase reductase (MTRR) is another 
enzyme maintaining methylcobalamin (cofactor of 
methionine synthase) in sufficient levels. This 
enzyme catalyzes the methylation of cobalamin using 
S-adenosylmethionine as a methyl donor and 
ultimately restores methionine synthase activity (12, 
13). MTRR gene is mapped on chromosome 5p15.2-
p15.3 (14). A66G is a single nucleotide polymorphism 
(rs1801394) in the MTRR gene that provokes the 
substitution of isoleucine with methionine at position 
22 (13). It has been previously documented that 
MTRR polymorphism increases the risk of NTDs 

(15-17). 

https://ircmj.com/index.php/IRCMJ/article/view/1350
http://creativecommons.org/licenses/by-nc/4.0/)
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2. Objectives 

Regarding the potential role of mentioned 
polymorphisms on folate metabolism pathway and 
level, and considering the existing controversy in 
previous studies, the present meta-analysis study aimed 
to investigate the association of maternal and fetal 
MTHFR C677T and MTRR A66G with the risk of NTDs.  

 

3. Methods 

3.1. Search strategy  
The association of maternal or fetal MTHFR C677T 

and maternal or fetal MTRR A66G polymorphisms 
with the risk of NTDs was evaluated independently by 
two authors who performed a comprehensive 
literature search in PubMed, Scopus, and Springer Link 
databases. The keywords used for systematic search in 
databases included MTHFR C677T, methylenete-
trahydrofolate reductase, polymorphism OR variant 
OR SNPs, MTRR A66G, methionine synthase reductase, 
NTDs, neural tube defect, and spina bifida. Two 
authors independently reviewed literature from each 
study according to the name of the first author, the 
year of publication, a sample size of case and control 
groups, and allelic and genotype frequencies. Any 
conflict between the two authors was resolved by 
consultation with a third reviewer. 

 
3.2. Inclusion criteria 

The inclusion criteria in the present meta-analysis 
study included case-control studies which assessed the 
association of maternal or fetal MTHFR C677T and 
maternal or fetal MTRR A66G polymorphisms with 
NTDs risk. The literature was supposed to provide 
enough data for genotype or allelic frequencies in case 
and control groups. Eventually, only full texts studies 
with human subjects written in English were included 
in the present meta-analysis study. 

3.3. Exclusion criteria 
The exclusion criteria in the present study included 

1) Studies conducted before 2000; 2) Animal studies; 3) 
Studies with insufficient information for allelic and 
genotype frequencies in case and control groups; 4) 
Non-English articles; and 5) Letters, reviews, hypothesis 
studies, and short communication articles. 

 
3.4. Statistical analysis  

The data were analyzed using STATA software 
(Version 16.0). The odds ratio (OR) with a 95% 
confidence interval (CI) was used to assess the 
association of maternal and fetal MTHFR C677T and 
MTRR A66G polymorphism with susceptibility to 
NTDs. The pooled ORs were calculated by the 
Random-effects model (Mantel-Hansel method) for 
allelic, homozygous, heterozygous, dominant, and 
recessive models. The heterogeneity in the present 
meta-analysis study was evaluated using I2, χ2, and 
τ2. The Forest plots were used to visualize the overall 
effects, and the Egger’test, Beggs’s test (18), and 
funnel plot were adopted for the assessment of 
publication bias. Eventually, the literature was 
geographically subdivided into different sub-groups. 

 

4. Results 

4.1. Literature characteristics  
The 573 articles were identified in PubMed, 

Scopus, and Springer link databases. According to the 
inclusion and exclusion criteria, authors reviewed the 
records based on their titles and their abstracts, and 
531 literatures were excluded from the study. The 
selected studies were reviewed according to their full 
text and nine studies were removed subsequently. 
Ultimately, 33 articles were included in the present 
meta-analysis study (Figure 1). Tables 1 and 2 
present the main characteristics of the included 
studies. 

 

 

                    Figure 1. Flowchart of the procedure for literature search 
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Table 1. Characteristics of included studies for the association of maternal and fetal MTHFR C677T with neural tube defect risk 

Characteristics of included studies on the association of maternal and fetal MTHFR C677T with neural tube defect risk 

Author’s name Year Country 
Case 
(N) 

Control 
(N) 

CC 
Case 

CT 
TT CC 

Control 
CT 

TT 

Da ́ valos (34) 2000 Mexico 68 101 19 35 14 31 51 19 
Lucock (15) 2000 United Kingdom 19 31 8 9 2 11 17 3 
Lucock (35) 2001 United Kingdom 21 28 9 9 3 12 13 3 
martinez (36) 2001 Mexico 38 31 11 12 15 12 16 3 
Garcia-Fragoso(37) 2002 Puerto 37 100 7 23 7 41 50 9 

Arbour (38) 2002 Canada 74 101 32 31 11 52 38 11 

Parle-McDermott (27) 2003 Ireland 277 255 105 138 36 125 104 26 
Alvarez Perez (39) 2003 Brazil (white) 81 52 37 38 6 30 16 6 
Alvarez Perez (39) 2003 Brazil (nonwhite) 50 74 37 12 1 51 20 3 
Relton (40) 2004 United Kingdom 186 512 86 78 22 191 254 67 
Felix (41) 2004 Brazil 41 44 19 15 7 16 22 6 
Grandone (42) 2006 Italy 57 143 10 35 12 38 79 26 
Dalal (43) 2007 India 101 60 56 21 26 45 12 3 
Houcher (44) 2009 Algeria 48 147 14 25 9 67 59 21 
Erdogan (45) 2010 Turkey 26 48 5 14 7 18 21 9 
Naushad (46) 2010 India 50 80 33 11 6 64 16 0 
Godbole (47) 2011 India 305 684 238 62 5 521 158 5 
Husna (25) 2013 Malaysia 24 14 15 8 1 11 3 0 
Zhi-zhen (48) 2013 China 51 66 10 25 16 22 22 7 
Kondo (49) 2014 Japan 230 9034 47 56 12 1763 2060 694 
Wang (50) 2015 China 144 300 31 73 40 96 159 45 
Bourouba (51) 2018 Algeria 48 82 25 17 6 33 35 14 
Nasri (32) 2018 Tunisia 77 71 21 41 15 31 34 6 
Nauman (52) 2018 Pakistan 109 100 67 31 11 72 26 2 
Cai (53) 2019 China 61 61 5 30 26 15 27 19 

Characteristics of included studies on the association of fetal MTHFR C677T with neural tube defect risk 
Garcia-Fragos (37) 2002 USA 31 100 10 18 3 41 50 9 
Parle-McDermott (27) 2003 Ireland 279 255 108 118 53 125 104 26 
Alvarez Perez (39) 2003 Brail (white) 81 51 35 38 8 29 15 7 
Alvarez Perez (39) 2003 Brazil (nonwhite) 50 75 32 16 2 52 22 1 
Relton (40) 2004 United Kingdom 200 578 92 78 30 267 247 64 
Grandone (42) 2006 Italy 15 143 0 11 4 38 79 26 
Erdogan (45) 2010 Turkey 33 48 13 16 4 18 21 9 
Behunova (54) 2010 Slovakia 93 290 47 36 9 164 106 20 
ESER(55) 2010 Turkey 39 34 18 14 7 19 17 8 
Husna MZ (25) 2013 Malaysia 24 13 18 6 0 11 2 0 
Fang (56) 2018 China 152 169 22 67 64 40 77 52 

 
Table 2. Characteristics of included studies on the association of maternal and fetal MTRR A66G with neural tube defect risk  

Characteristics of included studies on the association of maternal MTRR A66G with neural tube defect risk 

Author’s name Year Country Case N Control N AA 
Case 
AG 

GG AA Control AG GG 

LUCOCK (35) 2001 United Kingdom 21 28 5 10 6 8 14 6 
Relton (40) 2004 United Kingdom 203 532 208 107 68 58 263 211 
Relton (57) 2004 United Kingdom 89 176 12 42 35 20 82 74 
O’Leary (24) 2005 Ireland 447 476 149 215 83 178 222 76 
Van an derLinden(58) 2006 Netherlands 116 264 18 45 53 53 135 76 
Candito (24) 2008 France 77 61 16 39 22 22 25 14 
Naushad(46) 2010 India 50 80 0 33 17 0 52 28 
Abbas (31) 2016 Algeria 38 67 10 20 8 15 43 9 
Nasri (32) 2018 Tunisia 62 64 16 34 12 7 44 13 
Cai (53) 2019 China 61 61 22 31 8 33 24 4 

Characteristics of included studies on the association of fetal MTRR A66G with neural tube defect risk 
Relton (40) 2004 Tunisia 201 601 23 125 53 28 265 308 
O’Leary (26) 2005 Ireland 470 476 149 240 81 178 222 76 
Wang (59) 2015 China 165 280 45 91 29 105 139 36 
Abbas (31) 2016 Algeria 48 66 20 25 3 14 43 9 
Fang (56) 2018 China 151 169 66 67 18 95 62 11 

 
4.2. Evaluation of the association between maternal 
MTHFR C677T polymorphism and NTDs risk 

In total, 25 literature, including 2,225 cases and 
12,204 controls were analyzed in the present meta-
analysis study to assess the association of maternal 
MTHFR C677T polymorphism with the risk of NTDs. 

The random-effects model was used to evaluate the 
pooled OR. As indicated in Table 3 and Figure 2A, 
alleles and genotypes of maternal MTHFR C677T 
polymorphism were statically associated with NTDs. 
The allelic (log (OR)=1.344, 95% CI=1.147, 1.574) 
(P<0.001), homozygous (log (OR)=1.880, 95% 
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CI=1.360, 2.598) (P<0.001) and heterozygous (log 
(OR) =1.237, 95% CI=1.036, 1.477) (P=0.019) models 
showed significant correlation with the risk of NTDs. 
On the other hand, same results were observed in 
dominant (log (OR)=1.384, 95% CI=1.136, 1.689) 
(P<0.001) and recessive models (log (OR)=1.536, 
95% CI=1.194, 1.977) (P<0.001). 

 
4.3. Evaluation of the association of fetal MTHFR 
C677T polymorphism with NTDs risk 

In total, 11 studies with 997 cases and 1,756 
controls were included in the present meta-analysis 
to evaluate the association of fetal MTHFR C677T 
polymorphism with risk of NTDs. As presented in 
Table 3 and Figure 2 B, allelic (log (OR)=1.261, 95% 
CI=1.072, 1.485) (P=0.005), homozygous (log 
(OR)=1.6644, 95% CI=1.263, 2.140) (P<0.001), and 
heterozygous models (log (OR)=1.212, 95% CI=1.008, 

1.456) (P=0.040) were associated with the risk of 
NTDs. In addition, the dominant (log (OR)=1.297, 
95% CI=1.092, 1.540) (P=0.003) and recessive 
models (log (OR)=1.467, 95% CI=1.163, 1.850) 
(P<0.001) were significantly associated with the risk 
of NTDs. 

 
4.4. Evaluation of the association between maternal 
and fetal MTRR A66G polymorphism with NTDs risk 

In total, 10 literatures with 1,164 cases and 1,809 
controls were included to assess the maternal MTRR 
A66G polymorphism with NTD risk. In the following, 
five articles with 1,035 cases and 1,592 controls were 
included in the present study to analyze fetal MTRR 
A66G polymorphism with NTD risk. As presented in 
Table 4 and Figure 3 A and B, it was revealed that 
alleles and genotypes of maternal and fetal MTRR 
A66G had no significant association with NTD risk. 

 
Table 3. Meta-Analysis of pooled association of maternal and fetal MTHFR C677T polymorphism with neural tube defect risk  

Meta-Analysis of the pooled association between maternal MTHFR C677T polymorphism with  the risk of neural tube defect 

Variation 
Number of 

Studies 
Case 

frequency 
Control 

frequency 
OR (95% CI) 

OR 
P-value 

I2, 
heterogeneity 

P-value 

Publication Bias 
(Begg’s Test, P-value; 
Egger’s Test, P-value) 

C 25 2738 10041 -  - - 
T 25 1482 5323 -  - - 
CC 25 947 3368 -  - - 
CT 25 849 3312 -  - - 
TT 25 316 1007 -  - - 

T vs. C 25 - - 1.344 (1.147, 1.574) <0.001 64.4%, P< 0.001 
(z= -.28,P-value 

=0.005, z=.76, P-value 
=0.083) 

TT vs. CC 25 - - 1.880 (1.360, 2.598) <0.001 54.4%, P< 0.001 
(z=-.39,P-value =0.003, 
z=1.2,P-value =0.140) 

CT vs. CC 25 - - 1.237 (1.036, 1.477) 0.019 38.5%, P= 0.027 
(z=1.12,P-value 

=0.088, z=.86,P-value 
=0.088) 

TT+CT 
vs. CC 

25 - - 1.384 (1.136, 1.689) <0.001 55.8%, P< 0.001 
(z=1.24P-value =0.021, 
z=-.98P-value =0.047) 

TT vs. 
CT+CC 

25 - - 1.536 (1.194, 1.977) <0.001 40.5%, P= 0.020 
(z=1.43,P-value 

<0.001, z=.46,P-value 
=0.200) 

Meta-Analysis of the pooled association between fetal MTRR A66G polymorphism and neural tube defect risk 
C 11 1206 2348 -  - - 
T 11 797 1208 -  - - 
CC 11 395 804 -  - - 
CT 11 418 740 -  - - 
TT 11 184 222 -  - - 

T vs. C 11 - - 1.261 (1.072, 1.485) 0.005 31.2%, P= 0.150 
(z=1.53,P-value 

=0.534, z=-1.37P-value 
=0.533) 

TT vs. CC 11 - - 1.644 (1.263, 2.140) < 0.001 0.0%, P= 524 
(z=1.69,P-value 

=0.527, z=-1.32P-value 
=0.429) 

CT vs. CC 11 - - 1.212 (1.008, 1.456) 0.040 0.0%, P= 0.601 
(z=1.45.P-value 

=0.321, z=1.62,P-value 
=0.125) 

TT+CT 
vs. CC 

11 - - 1.297 (1.092, 1.540) 0.003 0.0%, P= 0.569 
(z=-.78,P-value =0.706, 
z=.88,P-value =0.460) 

TT vs. 
CT+CC 

11 - - 1.467 (1.163, 1.850) < 0.001 0.0%, P= 0.700 
(z=1.3,P-value =0.016, 
z=.6,P-value =0.090) 

Log (OR): Logarithm of odds ratio, I2: relative heterogeneity, OR P<0.05 was considered statistically significant 
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Figure 2. Forest plot of the association between maternal (A) and fetal (B) MTHFR C677T polymorphism with neural tube defect risk using 
T versus C allelic model in total population 

 
4.5. Subgroup analysis of the pooled association 
between maternal and fetal MTHFR C677T and MTRR 
A66G polymorphisms with NTDs risk 

As specified in Table 5, maternal MTHFR C677T 
polymorphism in Indian subcontinent subgroup had 

a significant association with NTDs risk in allelic 
(log(OR)=1.875, 95% CI=1.023, 3.434) (P=0.042), 
homozygous (log(OR)=4.920, 95% CI=2.387, 10.13) 
(P<0.001), and recessive models (log(OR)=4.745, 
95% CI=2.313, 9.734) (P<0.001). 

  

 

Figure 3. Forest plot of association of maternal (A) and fetal (B) MTRR A66G polymorphism with neural tube defect risk using A versus G 
(allelic model) in total population 
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Table 4. Meta-analysis of the pooled association between maternal and fetal MTRR A66G polymorphism with  neural tube defect risk 

Meta-Analysis of the pooled association between maternal MTRR A66G polymorphism and neural tube defect risk 

Variation 
Number 

of Studies 
Case 

frequency 
Control 

frequency 
OR (95% CI) 

OR 
P-value 

I2, 
heterogeneity 

P-value 

Publication Bias 
(Begg's Test, P-value; 
Egger's Test, P-value) 

A 10 1126 1692 -  - - 
G 10 1198 1926 -  - - 
AA 10 456 394 -  - - 
AG 10 576 904 -  - - 
GG 10 312 511 -  - - 

G vs. A 10 - - 
1.110 (0.926, 

1.331) 
0.259 53.5%, P= 0.022 

(z=.7, P-value =0.027, z=-
.88, P-value =0.127) 

GG vs. AA 10 - - 
0.947 (0.362, 

2.474) 
0.912 93.3%, P<0.001 

(z=1.47, P-value =0.323, 
z=2.03, P-value =0.220) 

AG vs. AA 10 - - 
0.772 (0.353, 

1.690) 
0.518 92.7%, P<0.001 

(z=1.5, P-value =0.405, 
(z=-.001,P-value =0.461) 

GG+AG 
vs. AA 

10 - - 
0.825 (0.356, 

1.911) 
0.653 94.5%, P<0.001 

(z=1.36, P-value =0.351, 
z=-0.16, P-value =0.408) 

GG vs. 
AG+AA 

10 - - 
1.106 (0.675, 

1.813) 
0.689 85.0%, P<0.001 

(z=2.06, P-value =0.273, 
z=1.002, P-value=0.129) 

Meta-Analysis of the pooled association between fetal MTRR A66G polymorphism and neural tube defect risk 
A 5 1572 1154 -  - - 
G 5 1610 916 -  - - 
AA 5 420 303 -  - - 
AG 5 731 548 -  - - 
GG 5 440 184 -  - - 

G vs. A 5 - - 
0.940 (0.599, 

1.477) 
0.790 92.3%, P<0.001 

(z=.13,P-value =0.982, 
z=.29, P-value =0.849) 

GG vs. AA 5 - - 
0.831 (0.334, 

2.068) 
0.691 89.5%, P<0.001 

(z=1.2, P-value =0.789, z=-
1.26, P-value =0.480) 

AG vs. AA 5 - - 
1.033 (0.683, 

1.562) 
0.879 73.2%, P= 0.05 

(z=1.4, P-value =0.349, 
z=1.28, P-value =0.162) 

GG+AG 
vs. AA 

5 - - 
0.933 (0.548, 

1.588) 
0.798 85.3%, P<0.001 

(z=1.29, P-value =0.621, 
(z=-1.85, P-value=0.170) 

GG vs. 
AG+AA 

5 - - 
0.873 (0.427, 

1.786) 
0.710 88.9%, P<0.001 

(z=1.88, P-value =0.834, 
(z=3.2, P-value =0.551) 

Log (OR): Logarithm of odds ratio, I2: relative heterogeneity, OR P<0.05 was considered statistically significant 
 

Table 5. Subgroup meta-analysis of the pooled association between maternal and fetal MTHFR and MTRR polymorphisms and neural 
tube defect risk  

Subgroup meta-analysis of the pooled association between maternal MTHFR C677T polymorphism with neural tube defect risk 

 
T vs. C 

OR (95%CI), P-value 
TT vs. CC 

OR (95%CI), P-value 
CT vs. CC 

OR (95%CI), P-value 
TT+CT vs. CC 

OR (95%CI), P-value 
TT vs. CT+CC 

OR (95%CI), P-value 

Africa 
1.260 (0.727, 2.186), 

0.410 
1.631 (0.571, 4.657), 

0.361 
1.338 (0.667, 2.685), 

0.413 
1.383 (0.638, 2.996), 

0.411 
1.370 (0.674, 2.786), 

0.385 

East Asia 
1.489 (0.959, 2.312), 

0.076 
2.290 (0.860, 6.093), 

0.097 
1.528 (0.965, 2.420), 

0.071 
1.807 (0.985, 3.316), 

0.056 
1.545 (0.794, 3.007), 

0.200 

Europe 
1.090 (0.797, 1.490), 

0.589 
1.177 (0.765, 1.812), 

0.458 
1.075 (0.655, 1.763), 

0.776 
1.097 (0.671, 1.794), 

0.712 
1.103 (0.799, 1.523), 

0.552 

Indian 
subcontinent 

1.875 (1.023, 3.434), 
0.042 

4.920 (2.387, 10.13), 
<0.001 

1.011 (0.778, 1.314), 
0.935 

1.547 (0.917, 2.609), 
0.102 

4.745 (2.313, 9.734), 
<0.001 

South 
America 

1.138 (0.832, 1.557), 
0.419 

1.258 (0.650, 2.433), 
0.496 

1.032 (0.688, 1.547), 
0.880 

1.099 (0.773, 1.543), 
0.598 

1.289 (0.609, 2.727), 
0.506 

Mixed 
1.544 (1.141, 2.089), 

0.005 
2.361 (1.239, 4.498), 

0.009 
1.784 (1.121, 2.840), 

0.015 
1.859 (1.200, 2.878), 

0.005 
1.681 (0.950, 2.977), 

0.075 
Subgroup meta-analysis of the pooled association between fetal MTHFR C677T polymorphism and neural tube defect risk 

Europe 
1.375 (1.107, 1.707), 

0.004 
1.784 (1.235, 2.576), 

0.002 
1.147 (0.859, 1.531), 

0.353 
1.274 (0.944, 1.720), 

0.114 
1.643 (1.210, 2.231), 

0.001 

Mixed 
1.121 (0.864, 1.455), 

0.390 
1.444 (0.932, 2.236), 

0.100 
1.407 (1.022, 1.939), 

0.036 
1.407 (1.042, 1.899), 

0.026 
1.258 (0.880, 1.797), 

0.208 
Subgroup meta-analysis of the pooled association between maternal MTRR A66G polymorphism and  neural tube defect risk 

 
G vs. A 

OR (95%CI), P-value 
GG vs. AA 

OR (95%CI), P-value 
AG vs. GG 

OR (95%CI), P-value 
GG+AG vs. G 

OR (95%CI), P-value 
GG vs. AG+AA 

OR (95%CI), P-value 

Europe 
1.132 (0.905, 1.417), 

0.278 
0.902 (0.253, 3.221), 

0.874 
0.781 (0.269, 2.266), 

0.649 
0.831 (0.266, 2.602), 

0.751 
1.026 (0.524, 2.011), 

0.940 

Mixed 
1.067 (0.740, 1.539), 

0.728 
1.066 (0.406, 2.801), 

0.896 
0.792 (0.319, 1.963), 

0.614 
0.855 (0.341, 2.146), 

0.739 
1.186 (0.747, 1.885), 

0.469 

Log (OR): Logarithm of odds ratio, P<0.05 was considered statistically significant 
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In addition, maternal MTHFR C677T polymorphism 
in the mixed subgroup was connected to NTDs risk in 
allelic (log (OR)=1.544, 95% CI=1.141, 2.089) (P=0.001) 
model. Same results were associated with the risk of 
NTDs in homozygous (log (OR)=2.361, 95% CI=1.239, 
4.498) (P=0.009), heterozygous (log (OR) =1.784, 95% 
CI=1.121, 2.840) (P=0.015), and dominant models (log 
(OR)=1.859, 95% CI=(1.200, 2.878) (P=0.005(. 

As for the fetal MTHFR C677T polymorphism in the 
Europe sub group, a significant association with NTDs 
risk was observed in the allelic (log (OR)=1.375,  
95% CI=(1.107, 1.707) (P=0.004), homozygous 
(log(OR)=1.784, 95% CI=1.235, 2.576) (P=0.002) and 
recessive models (log(OR)=1.634, 95% CI=(1.210, 
2.231) (P=0.001(. 

No significant association was observed in the 
maternal MTRR A66G polymorphism with the risk of 
NTDs in different subgroups (Table 5). 

 

4.6. Publication bias 
The Egger’s test and Begg’s funnel plot were 

performed to evaluate the publication bias between 
the studies. However, since Egger’s test could 
indicate publication bias better than Begg’s test, the 
results of Egger’s test were assessed to determine the 
publication bias. Based on the results of Egger’s test, 
no publication bias was detected in different genetic 
models, except for the maternal MTHFR C677T 
dominant model (TT+CT vs. CC P=0.047) (Table 3 
and 4). 

 

5. Discussion 

The NTD, as a congenital malformation of the 
central nervous system, occurs in the early stage of 
embryogenesis (about 28 days after conception) and 
is caused by a defect in neural tube closure (19, 20). 
Different major types of NTDs include anencephaly, 
encephalocele, and spina bifida. Anencephaly is the 
fetal type of NTDs, while spina bifida causes severe 
disability in affected children (3). The results of 
previous studies revealed that the consumption of 
folic acid supplementation during pregnancy reduced 
the risk of NTDs in the offspring of these women. This 
indicates the crucial function of folic acid in the 
pathogenesis of NTDs (4, 6). As a coenzyme for DNA 
synthesis and DNA methylation enzymes, folic acid 
has a central role in the neurulation process during 
embryogenesis (21-23). Regarding the role of folic 
acid in the pathogenesis of NTDs, the enzymes 
involved in the folic acid metabolism can be targeted 
for NTDs-related studies. MTHFR and MTRR are 
among the enzymes that are involved in folate 
metabolism (8, 16). The SNPs in the genes of these 
enzymes can change their activity and cause NTDs by 
altering folate levels. The results of previous studies 
revealed that MTHFR C677T and MTRR A66G 
polymorphisms might be related to NTDs incidence 
(24-27). Considering the statistical power of the 

meta-analysis, the present study aimed to investigate 
the relation of maternal and fetal MTHFR C677T and 
MTRR A66G with susceptibility to NTDs. 

The results of 25 literatures with 2,225 cases and 
12,204 controls were combined to assess the 
association of maternal MTHFR C677T with the NTDs 
risk. With no publication bias, it was revealed that 
maternal MTHFR C677T polymorphism was linked to 
the occurrence of NTDs in newborns. In addition, the 
results of subgroup analysis indicated that there was 
a significant correlation between the maternal 
MTHFR C677T polymorphism and NTDs risk in the 
Indian subcontinent and mixed subgroups. 

In the present meta-analysis study, the 
association of fetal MTHFR C677T polymorphism 
with the risk of NTDs was investigated in 11 studies 
with 997 cases and 1,756 controls that have been 
selected based on the inclusion and exclusion criteria. 
The findings showed that fetal MTHFR C677T 
polymorphism was associated with susceptibility to 
NTDs in the overall population and the European 
subgroup. This result was in line with the result of 
the study performed by Yang et al. (28), which 
showed that maternal and fetal MTHFR C677T 
polymorphism was associated with the risk of NTDs. 
In the same line, Yadav et al. also reported a positive 
association between maternal MTHFR C677T 
polymorphism and MTRR A66G polymorphism with 
the NTDs risk (29). According to this study, MTHFR 
C677T polymorphism was strongly associated with 
NTDs in Asian, European, and American subgroups. 
These results might be associated with variations in 
folate, vitamin B12, and vitamin B6 intake in different 
geographical areas. These findings were in line with 
those obtained in this study, except that in the 
present study a positive relation was observed 
between the fetal MTHFR C677T polymorphism in 
the European subgroup. The results of the present 
study indicated that there was no association 
between maternal and fetal MTHFR C677T 
polymorphism with the risk of NTDs in the East Asian 
population. Our results opposed those obtained in the 
previous studies which have verified the association 
of MTHFR polymorphism and the risk of NTDs in the 
Asian population (28, 30). This contradiction might 
be due to the omission of non-English language 
studies in this meta-analysis study which included 
only original articles and excluded letters, short 
communication articles, and reports. 

Previous studies have introduced MTRR A66G 
polymorphism as another mutation contributing to 
both maternal and fetal NTDs (31, 32). This theory 
was assessed with a combination of the results of 10 
literatures (including 1,164 cases and 1,809 controls) 
and 5 studies (including 1,035 cases and 1,592 
controls). The obtained results reported a negative 
correlation of the maternal and fetal MTRR A66G 
polymorphisms with NTDs risk in offspring. In 
contrast to the results of this study, Yadav et al. (29) 
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showed that maternal MTRR A66G was associated 
with the occurrence of NTD. Although the adopted 
inclusion and exclusion criteria in this study were 
similar to those used in other studies, the 
discrepancies in the results could be attributed to the 
number of original publications included in this 
study. 

In another meta-analysis study conducted by 
Shengrong Ouyang et al., 10 studies (including 1,358 
cases and 2,169 controls) were analyzed to explore 
the association of MTRR A66G polymorphisms and 
NTDs risks in Caucasian children. The result of this 
study reflected a negative association between the 
MTRR A66G polymorphisms and NTDs risks (33). 
These results could be related to the limited number 
of publications in the Caucasus area. The results of 
this study were consistent with these results; 
however, a negative relation between the MTRR 
A66G polymorphisms and NTDs risk during 
embryonic development was observed in this meta-
analysis study. 

The contradictory results in different meta-
analysis studies can be explained by limited 
publications, different inclusion and exclusion 
criteria, and various folate supplementation in 
different countries. In addition, gene to gene 
interaction, epigenetic factors, and family history are 
important factors that were not involved in assessing 
the link of MTHFR and MTRR polymorphisms with 
the NTDs risks. All previous studies agreed on the 
importance of folate supplementation before and 
during the pregnancy and confirmed its relation with 
MTHFR and MTRR polymorphisms. 

 

6. Conclusion 

The present meta-analysis study revealed the 
possible association of maternal and fetal MTHFR 
polymorphisms and MTRR polymorphisms with NTDs 
risk by pooling the available data. Based on the obtained 
results in the present meta-analysis study, maternal and 
fetal MTHFR C677T polymorphism is associated with 
susceptibility to NTDs. Moreover, the results of the 
association of maternal and fetal MTRR A66G with the 
risk of NTDs suggested that there was no significant 
statistical association between maternal and fetal MTRR 
A66G with the risk of NTDs. 
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