Document Type : Research articles

Authors

1 Department of Surgical Oncology, Baotou Cancer Hospital, Baotou, China

2 Department of Pathology, Baotou Cancer Hospital, Baotou, China

3 Department of Digestive System Disease, Baotou Cancer Hospital, Baotou, China

Abstract

Background: Recently, some studies have revealed that microRNAs (miRs; miRNAs) mainly regulate gene expression in the transcription of microRNAs. However, the role of microRNAs in cell development, differentiation, proliferation, and other physiological processes remains unclear.
Objectives: The present study aimed to investigate the expression level of microRNA-195 in the pathological tissues of patients with cardiac carcinoma and its clinical effects.
Methods: Patients with primary cardiac carcinoma were enrolled as the study subjects. The tumor and adjacent tissue samples for cancer pathology were obtained during the operation. Reverse transcription polymerase chain reaction (RT-PCR) was used to detect the expression of microRNA-195 and its correlation with the clinicopathological features of cardiac carcinoma was analyzed.
Results: A total of 64 patients were included in this study. Firstly, the expression rate of miR-195 in cardiac carcinoma tissues showed a significant decreasing trend (3.65 ± 0.42 vs. 2.05 ± 0.33) (P < 0.001) and the actual expression level of miR-195 in pathological tissues of cardiac carcinoma was negatively correlated with the malignant degree of pathological tissues (P = 0.028), invasion (P = 0.037), and lymph node metastasis of cardiac carcinoma (P = 0.023), but miR-195 was not correlated with age (P = 0.615) and gender (P = 0.465).
Conclusions: The expression of microRNA-195 is closely correlated to the severity of cardiac carcinoma and the occurrence of lymph node metastasis.

Keywords

  1. Huang Q, Zhou XL, Fan XS, Guo LC, Ding YL, Zhang YF. [The 2016 International Gastric Cancer Association and American Joint Committee on Cancer gastric cardiac carcinoma pathologic staging guidelines: Progress and limitation]. Zhonghua Bing Li Xue Za Zhi. 2017;46(2):73-5. Chinese. doi: 10.3760/cma.j.issn.0529-5807.2017.02.001. [PubMed: 28173662].
  2. Li J, Qin S, Xu J, Xiong J, Wu C, Bai Y, et al. Randomized, double-blind, placebo-controlled phase III trial of apatinib in patients with chemotherapy-refractory advanced or metastatic adenocarcinoma of the stomach or gastroesophageal junction. J Clin Oncol. 2016;34(13):1448-54. doi: 10.1200/JCO.2015.63.5995. [PubMed: 26884585].
  3. Shah MA, Cho JY, Tan IB, Tebbutt NC, Yen CJ, Kang A, et al. A randomized phase II study of FOLFOX with or without the MET inhibitor onartuzumab in advanced adenocarcinoma of the stomach and gastroesophageal junction. Oncologist. 2016;21(9):1085-90. doi: 10.1634/theoncologist.2016-0038. [PubMed: 27401892]. [PubMed Central: PMC5016069].
  4. Umemura T, Kuroki C. Circulating MicroRNAs as biomarkers of colorectal cancer. Rinsho Byori. 2015;63(3):336-46.
  5. Dong L, Bi KH, Huang N, Chen CY. Biological analysis of chronic lymphocytic leukemia: Integration of mRNA and microRNA expression profiles. Genet Mol Res. 2016;15(1). doi: 10.4238/gmr.15017170. [PubMed: 26909901].
  6. Liu JP, Xu WP, Yin C, Zhang X, Xie WF. Expression of microRNA-544 in hepatocelluar carcinoma (HCC) and its effect on malignant behaviors of HCC cells. Acad J Second Mil Med Univ. 2017;38(9):1106-11. doi: 10.16781/j.0258-879x.2017.09.1106.
  7. Smyth EC, Turner NC, Pearson A, Peckitt C, Chau I, Watkins DJ, et al. Phase II study of AZD4547 in FGFR amplified tumours: Gastroesophageal cancer (GC) cohort pharmacodynamic and biomarker results. J Clin Oncol. 2016;34(4_suppl):154. doi: 10.1200/jco.2016.34.4_suppl.154.
  8. Lee J, Bendell JC, Rha SY, Bang Y, Clark L, Xiang H, et al. Antitumor activity and safety of FPA144, an ADCC-enhanced, FGFR2b isoform-selective monoclonal antibody, in patients with FGFR2b+ gastric cancer and advanced solid tumors. J Clin Oncol. 2016;34(15_suppl):2502. doi: 10.1200/JCO.2016.34.15_suppl.2502.
  9. Le HB, Zhu WY, Chen DD, He JY, Huang YY, Liu XG, et al. Evaluation of dynamic change of serum miR-21 and miR-24 in pre- and post-operative lung carcinoma patients. Med Oncol. 2012;29(5):3190-7. doi: 10.1007/s12032-012-0303-z. [PubMed: 22782668].
  10. Guo J, Miao Y, Xiao B, Huan R, Jiang Z, Meng D, et al. Differential expression of microRNA species in human gastric cancer versus non-tumorous tissues. J Gastroenterol Hepatol. 2009;24(4):652-7. doi: 10.1111/j.1440-1746.2008.05666.x. [PubMed: 19175831].
  11. Pekarsky Y, Balatti V, Croce CM. BCL2 and miR-15/16: From gene discovery to treatment. Cell Death Differ. 2018;25(1):21-6. doi: 10.1038/cdd.2017.159. [PubMed: 31745319].
  12. Abd-El-Fattah AA, Sadik NA, Shaker OG, Aboulftouh ML. Differential microRNAs expression in serum of patients with lung cancer, pulmonary tuberculosis, and pneumonia. Cell Biochem Biophys. 2013;67(3):875-84. doi: 10.1007/s12013-013-9575-y. [PubMed: 23559272].
  13. Drabsch Y, ten Dijke P. TGF-beta signalling and its role in cancer progression and metastasis. Cancer Metastasis Rev. 2012;31(3-4):553-68. doi: 10.1007/s10555-012-9375-7. [PubMed: 22714591].
  14. Wang X, Liu Y, Liu X, Yang J, Teng G, Zhang L, et al. MiR-124 inhibits cell proliferation, migration and invasion by directly targeting SOX9 in lung adenocarcinoma. Oncol Rep. 2016;35(5):3115-21. doi: 10.3892/or.2016.4648. [PubMed: 26935152].
  15. Cai H, Zhao H, Tang J, Wu H. Serum miR-195 is a diagnostic and prognostic marker for osteosarcoma. J Surg Res. 2015;194(2):505-10. doi: 10.1016/j.jss.2014.11.025. [PubMed: 25498513].
  16. Liu B, Qu J, Xu F, Guo Y, Wang Y, Yu H, et al. MiR-195 suppresses non-small cell lung cancer by targeting CHEK1. Oncotarget. 2015;6(11):9445-56. doi: 10.18632/oncotarget.3255. [PubMed: 25840419]. [PubMed Central: PMC4496229].
  17. Shen J, Stass SA, Jiang F. MicroRNAs as potential biomarkers in human solid tumors. Cancer Lett. 2013;329(2):125-36. doi: 10.1016/j.canlet.2012.11.001. [PubMed: 23196059]. [PubMed Central: PMC3552101].
  18. Maroof H, Irani S, Arianna A, Vider J, Gopalan V, Lam AK. Interactions of vascular endothelial growth factor and p53 with miR-195 in thyroid carcinoma: Possible therapeutic targets in aggressive thyroid cancers. Curr Cancer Drug Targets. 2019;19(7):561-70. doi: 10.2174/1568009618666180628154727. [PubMed: 29956628].
  19. Liu D, Zhu Y, Pang J, Weng X, Feng X, Guo Y. Knockdown of long non-coding RNA MALAT1 inhibits growth and motility of human hepatoma cells via modulation of miR-195. J Cell Biochem. 2018;119(2):1368-80. doi: 10.1002/jcb.26297. [PubMed: 28722813].
  20. Qattan A, Intabli H, Alkhayal W, Eltabache C, Tweigieri T, Amer SB. Robust expression of tumor suppressor miRNA's let-7 and miR-195 detected in plasma of Saudi female breast cancer patients. BMC Cancer. 2017;17(1):799. doi: 10.1186/s12885-017-3776-5. [PubMed: 29183284]. [PubMed Central: PMC5706292].
  21. Chen X, Wang A. Clinical significance of miR-195 in hepatocellular carcinoma and its biological function in tumor progression. Onco Targets Ther. 2019;12:527-34. doi: 10.2147/OTT.S190108. [PubMed: 30666131]. [PubMed Central: PMC6330974].
  22. Yang C, Wu K, Wang S, Wei G. Long non-coding RNA XIST promotes osteosarcoma progression by targeting YAP via miR-195-5p. J Cell Biochem. 2018;119(7):5646-56. doi: 10.1002/jcb.26743. [PubMed: 29384226].
  23. Yu X, Zhang Y, Cavazos D, Ma X, Zhao Z, Du L, et al. miR-195 targets cyclin D3 and survivin to modulate the tumorigenesis of non-small cell lung cancer. Cell Death Dis. 2018;9(2):193. doi: 10.1038/s41419-017-0219-9. [PubMed: 29416000]. [PubMed Central: PMC5833354].