Document Type : Research articles

Authors

1 Nutrition and Metabolic Diseases Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran

2 Student Research Committee, Department of Nutrition, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran

3 Thalassemia and Hemoglobinopathy Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran

4 Nutrition Department, Faculty of Para-Medical Sciences, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran

Abstract

Background: Low Glycemic Index (GI) and high Satiety Index (SI) foods have been associated with the decreased risk of chronic diseases and obesity.
Objectives: The present study examined the effect of oak flour on GI, Glycemic Load (GL), and SI of white bread.
Methods: This randomized crossover trial was conducted at Ahvaz University of Medical Sciences, Ahvaz, Iran, during the year 2017. To determine the GI, 10 healthy subjects consumed three bread types (white bread, bread containing 25% oak flour, and bread containing 50% oak flour) and reference food (glucose) containing 50 g of carbohydrates on separate occasions. Finger-prick blood samples were collected at fasting (0 min) and at 15, 30, 45, 60, 90, and 120 min after meal consumption. To determine the SI, 20 healthy individuals consumed 240 kcal portions of test bread types (white bread, bread containing 25% oak flour, and bread containing 50% oak flour) on separate occasions. The satiety ratings were collected at fasting and every 15 min for over 2 h after food ingestion to evaluate the SI.
Results: There were no significant differences in the mean of blood glucose Incremental Areas Under the Curve (IAUC) between the test bread types (white bread: 2,883.2 ± 353.7 vs. 25% oak flour bread: 3,163.1 ± 214.7 vs. 50% oak flour bread: 3,245.1 ± 255.9) (P > 0.05). Also, no significant differences were observed between the mean of bread GIs (P > 0.05). The satiety IAUCs of both oak bread types (25% oak flour bread: 377.17 ± 59.83, 50% oak flour bread: 427.87 ± 55.46) were significantly greater than that of white bread (248.55 ± 46.45) (P < 0.001). The SI of both oak bread samples (25% oak flour bread: 202.48 ± 7.92, 50% oak flour bread: 266.25 ± 11.66) was significantly greater than that of white bread (100) (P < 0.001).
Conclusions: The addition of oak flour did not modify the GI; however, it increased the SI of white bread and created a greater feeling of satiety.

Keywords

  1. enkins DJ, Wolever TM, Taylor RH, Barker H, Fielden H, Baldwin JM, et al. Glycemic index of foods: A physiological basis for carbohydrate exchange. Am J Clin Nutr. 1981;34(3):362-6. doi: 10.1093/ajcn/34.3.362. [PubMed: 6259925].
  2. Schwingshackl L, Hoffmann G. Long-term effects of low glycemic index/load vs. high glycemic index/load diets on parameters of obesity and obesity-associated risks: A systematic review and meta-analysis. Nutr Metab Cardiovasc Dis. 2013;23(8):699-706. doi: 10.1016/j.numecd.2013.04.008. [PubMed: 23786819].
  3. Blaak EE, Antoine JM, Benton D, Bjorck I, Bozzetto L, Brouns F, et al. Impact of postprandial glycaemia on health and prevention of disease. Obes Rev. 2012;13(10):923-84. doi: 10.1111/j.1467-789X.2012.01011.x. [PubMed: 22780564]. [PubMed Central: PMC3494382].
  4. Niwano Y, Adachi T, Kashimura J, Sakata T, Sasaki H, Sekine K, et al. Is glycemic index of food a feasible predictor of appetite, hunger, and satiety? J Nutr Sci Vitaminol (Tokyo). 2009;55(3):201-7. doi: 10.3177/jnsv.55.201. [PubMed: 19602827].
  5. Ludwig DS. Dietary glycemic index and obesity. J Nutr. 2000;130(2S Suppl):280S-3. doi: 10.1093/jn/130.2.280S. [PubMed: 10721888].
  6. Foster-Powell K, Holt SH, Brand-Miller JC. International table of glycemic index and glycemic load values: 2002. Am J Clin Nutr. 2002;76(1):5-56. doi: 10.1093/ajcn/76.1.5. [PubMed: 12081815].
  7. Keogh J, Atkinson F, Eisenhauer B, Inamdar A, Brand-Miller J. Food intake, postprandial glucose, insulin and subjective satiety responses to three different bread-based test meals. Appetite. 2011;57(3):707-10. doi: 10.1016/j.appet.2011.08.015. [PubMed: 21907743].
  8. Bo S, Seletto M, Choc A, Ponzo V, Lezo A, Demagistris A, et al. The acute impact of the intake of four types of bread on satiety and blood concentrations of glucose, insulin, free fatty acids, triglyceride and acylated ghrelin. A randomized controlled cross-over trial. Food Res Int. 2017;92:40-7. doi: 10.1016/j.foodres.2016.12.019. [PubMed: 28290296].
  9. Lunde MS, Hjellset VT, Holmboe-Ottesen G, Hostmark AT. Variations in postprandial blood glucose responses and satiety after intake of three types of bread. J Nutr Metab. 2011;2011:437587. doi: 10.1155/2011/437587. [PubMed: 21773021]. [PubMed Central: PMC3137908].
  10. Rakic S, Petrovic S, Kukic J, Jadranin M, Tesevic V, Povrenovic D, et al. Influence of thermal treatment on phenolic compounds and antioxidant properties of oak acorns from Serbia. Food Chem. 2007;104(2):830-4. doi: 10.1016/j.foodchem.2007.01.025.
  11. Saini R, Patil SM. Anti-diabetic activity of roots of Quercus infectoria olivier in alloxan Induced diabetic rats. Int J Pharm Sci Res. 2012;3(5):1318.
  12. Yasuda M, Yasutake K, Hino M, Ohwatari H, Ohmagari N, Takedomi K, et al. Inhibitory effects of polyphenols from water chestnut (Trapa japonica) husk on glycolytic enzymes and postprandial blood glucose elevation in mice. Food Chem. 2014;165:42-9. doi: 10.1016/j.foodchem.2014.05.083. [PubMed: 25038647].
  13. TBE Peel Extract. The effects of water chestnut (Trapa bispinosa Roxb.) on the inhibition of glycometabolism and the improvement in postprandial blood glucose levels in humans. Glycative Stress Res. doi: 10.24659/gsr.3.3_124.
  14. Sood S, Mishra M, Sood A, Thakur V. Hypoglycaemic and hypocholesterolimic efficacy of horse chestnut (Aesculus indica) using rat models. J Clin Nutr Diet. 2015;1(1). doi: 10.4172/2472-1921.100006.
  15. Dogan A, Celik I, Kaya MS. Antidiabetic properties of lyophilized extract of acorn (Quercus brantii Lindl.) on experimentally STZ-induced diabetic rats. J Ethnopharmacol. 2015;176:243-51. doi: 10.1016/j.jep.2015.10.034. [PubMed: 26505295].
  16. Brouns F, Bjorck I, Frayn KN, Gibbs AL, Lang V, Slama G, et al. Glycaemic index methodology. Nutr Res Rev. 2005;18(1):145-71. doi: 10.1079/NRR2005100. [PubMed: 19079901].
  17. Matthews JN, Altman DG, Campbell MJ, Royston P. Analysis of serial measurements in medical research. BMJ. 1990;300(6719):230-5. doi: 10.1136/bmj.300.6719.230. [PubMed: 2106931]. [PubMed Central: PMC1662068].
  18. Holt SH, Miller JC, Petocz P, Farmakalidis E. A satiety index of common foods. Eur J Clin Nutr. 1995;49(9):675-90. [PubMed: 7498104].
  19. Scazzina F, Siebenhandl-Ehn S, Pellegrini N. The effect of dietary fibre on reducing the glycaemic index of bread. Br J Nutr. 2013;109(7):1163-74. doi: 10.1017/S0007114513000032. [PubMed: 23414580].
  20. Ekanayake S. Food related factors that affect the glycaemic response and glycaemic index of foods. Healthcare Sci.
  21. Augustin LS, Franceschi S, Jenkins DJ, Kendall CW, La Vecchia C. Glycemic index in chronic disease: A review. Eur J Clin Nutr. 2002;56(11):1049-71. doi: 10.1038/sj.ejcn.1601454. [PubMed: 12428171].
  22. Jenkins AL, Kacinik V, Lyon M, Wolever TM. Effect of adding the novel fiber, PGX(R), to commonly consumed foods on glycemic response, glycemic index and GRIP: A simple and effective strategy for reducing post prandial blood glucose levels--a randomized, controlled trial. Nutr J. 2010;9:58. doi: 10.1186/1475-2891-9-58. [PubMed: 21092221]. [PubMed Central: PMC2996336].
  23. Ames N, Blewett H, Storsley J, Thandapilly SJ, Zahradka P, Taylor C. A double-blind randomised controlled trial testing the effect of a barley product containing varying amounts and types of fibre on the postprandial glucose response of healthy volunteers. Br J Nutr. 2015;113(9):1373-83. doi: 10.1017/S0007114515000367. [PubMed: 25850814].
  24. Capriles VD, Areas JA. Effects of prebiotic inulin-type fructans on structure, quality, sensory acceptance and glycemic response of gluten-free breads. Food Funct. 2013;4(1):104-10. doi: 10.1039/c2fo10283h. [PubMed: 23032642].
  25. Linderborg KM, Jarvinen R, Lehtonen HM, Viitanen M, Kallio HP. The fiber and/or polyphenols present in lingonberries null the glycemic effect of the sugars present in the berries when consumed together with added glucose in healthy human volunteers. Nutr Res. 2012;32(7):471-8. doi: 10.1016/j.nutres.2012.06.004. [PubMed: 22901554].
  26. Thondre PS, Wang K, Rosenthal AJ, Henry CJ. Glycaemic response to barley porridge varying in dietary fibre content. Br J Nutr. 2012;107(5):719-24. doi: 10.1017/S0007114511003461. [PubMed: 21787456].
  27. Lyly M, Liukkonen KH, Salmenkallio-Marttila M, Karhunen L, Poutanen K, Lahteenmaki L. Fibre in beverages can enhance perceived satiety. Eur J Nutr. 2009;48(4):251-8. doi: 10.1007/s00394-009-0009-y. [PubMed: 19306033].
  28. Repin N, Kay BA, Cui SW, Wright AJ, Duncan AM, Douglas Goff H. Investigation of mechanisms involved in postprandial glycemia and insulinemia attenuation with dietary fibre consumption. Food Funct. 2017;8(6):2142-54. doi: 10.1039/c7fo00331e. [PubMed: 28581555].
  29. Holm J, Bjorck I. Bioavailability of starch in various wheat-based bread products: evaluation of metabolic responses in healthy subjects and rate and extent of in vitro starch digestion. Am J Clin Nutr. 1992;55(2):420-9. doi: 10.1093/ajcn/55.2.420. [PubMed: 1734680].
  30. Holt SH, Miller JB. Particle size, satiety and the glycaemic response. Eur J Clin Nutr. 1994;48(7):496-502. [PubMed: 7956991].
  31. Hlebowicz J, Lindstedt S, Bjorgell O, Hoglund P, Almer LO, Darwiche G. The botanical integrity of wheat products influences the gastric distention and satiety in healthy subjects. Nutr J. 2008;7:12. doi: 10.1186/1475-2891-7-12. [PubMed: 18439313]. [PubMed Central: PMC2383922].
  32. Rondanelli M, Opizzi A, Perna S, Faliva M, Solerte SB, Fioravanti M, et al. Acute effect on satiety, resting energy expenditure, respiratory quotient, glucagon-like peptide-1, free fatty acids, and glycerol following consumption of a combination of bioactive food ingredients in overweight subjects. J Am Coll Nutr. 2013;32(1):41-9. doi: 10.1080/07315724.2013.767667. [PubMed: 24015698].
  33. Pasman WJ, Heimerikx J, Rubingh CM, van den Berg R, O'Shea M, Gambelli L, et al. The effect of Korean pine nut oil on in vitro CCK release, on appetite sensations and on gut hormones in post-menopausal overweight women. Lipids Health Dis. 2008;7:10. doi: 10.1186/1476-511X-7-10. [PubMed: 18355411]. [PubMed Central: PMC2322999].
  34. Stefoska-Needham A, Beck EJ, Johnson SK, Chu J, Tapsell LC. Flaked sorghum biscuits increase postprandial GLP-1 and GIP levels and extend subjective satiety in healthy subjects. Mol Nutr Food Res. 2016;60(5):1118-28. doi: 10.1002/mnfr.201500672. [PubMed: 26866508].
  35. Raasmaja A, Lecklin A, Li XM, Zou J, Zhu GG, Laakso I, et al. A water-alcohol extract of Citrus grandis whole fruits has beneficial metabolic effects in the obese Zucker rats fed with high fat/high cholesterol diet. Food Chem. 2013;138(2-3):1392-9. doi: 10.1016/j.foodchem.2012.09.140. [PubMed: 23411259].
  36. Kubow S, Hobson L, Iskandar MM, Sabally K, Donnelly DJ, Agellon LB. Extract of Irish potatoes (Solanum tuberosum L.) decreases body weight gain and adiposity and improves glucose control in the mouse model of diet-induced obesity. Mol Nutr Food Res. 2014;58(11):2235-8. doi: 10.1002/mnfr.201400013. [PubMed: 25066548].
  37. Aragones G, Ardid-Ruiz A, Ibars M, Suarez M, Blade C. Modulation of leptin resistance by food compounds. Mol Nutr Food Res. 2016;60(8):1789-803. doi: 10.1002/mnfr.201500964. [PubMed: 26842874].
  38. Barros F, Awika JM, Rooney LW. Interaction of tannins and other sorghum phenolic compounds with starch and effects on in vitro starch digestibility. J Agric Food Chem. 2012;60(46):11609-17. doi: 10.1021/jf3034539. [PubMed: 23126482].
  39. Hargrove JL, Greenspan P, Hartle DK, Dowd C. Inhibition of aromatase and alpha-amylase by flavonoids and proanthocyanidins from Sorghum bicolor bran extracts. J Med Food. 2011;14(7-8):799-807. doi: 10.1089/jmf.2010.0143. [PubMed: 21612457].