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Abstract 

Background: Congenital malformations are one of the most important and common types of anomalies in infants, which are one of the 
main causes of disability and mortality in children.       
Objectives: This study aimed to investigate the risk factors affecting the incidence of congenital malformations, as well as the number of 
different infant anomalies recorded in neonatal health data in Khoy, Iran, during 2017. 
Methods: In this study, all neonates born in the maternity wards of hospitals in Khoy, Iran, during 2017 were evaluated in terms of 
gender, weight, and parental consanguinity. Hurdle and Zero-inflation approaches were utilized for the double Poisson model. Moreover, 
the data were collected using some checklists, and the analyses were performed in R-3-6-1 software. 
Results: According to the results of the present study, the Hurdle approach was better than Zero-inflation. The birth weight and parental 
consanguinity affected the incidence of congenital malformations in infants. 
Conclusion: Given that a significant proportion of infants are born without any congenital malformations, it is important to use count 
regression models based on excess zero approaches to assess congenital malformations. It is also necessary to take steps to reduce 
consanguineous marriages and the number of infants with low-birth-weight to prevent congenital malformations. 
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1. Background 

Birth defects are structural or functional 
anomalies at birth that can lead to physical, mental, 
and developmental disabilities, as well as other 
health problems (1). Congenital malformations are 
one of the most common anomalies in children (2). 
Any type of anatomical defect at birth that has 
medical, surgical, or cosmetic consequences is 
called congenital malformations (3), which are 
important causes of disability and mortality in 
infants (4). According to the World Health 
Organization, three million babies are born with 
birth defects each year in the world, killing 495,000 
babies worldwide (5).  

Moreover, 20% of deaths in children under one 
year of age and 25% of hospitalizations are due to 
congenital malformation (6). Although various genetic, 
environmental, and teratogenic factors, such as 
maternal addiction to alcohol, diabetes, malnutrition, 
infection, hyperthermia, drug use, and contact with 
chemicals or radioactive substances are mentioned as 
factors causing congenital malformations, the cause of 
the anomaly is unclear in 40-60% of people with 
congenital malformations (7). In Iran, about 30,000 to 
40,000 disabled infants are born each year, and this 
significant number not only has physical and mental 

problems but also creates many psychological and 
economic problems for their families and the 
government (8).  

The individual's family system is also negatively 
affected by each person's problems and disabilities. 
Proper identification of birth defects is the first step 
to providing useful genetic counseling to a parent 
couple. Because of the importance of life expectancy 
in newborns, congenital malformations are the most 
important issue in health care today (9). 

Poisson regression can be used to investigate 
the factors and risk factors affecting the number of 
birth defects in newborns. The Poisson regression 
model is the most common model used in count 
data analysis. An interesting feature of this 
distribution is the equality of mean and variance 
(10). One of the most common problems in count 
data analysis is the possibility of over-dispersion in 
this type of data. If the variance is larger than the 
mean, over-dispersion occurs; accordingly, measures 
need to be taken to combat over-dispersion. 
Another issue with count data is the possibility of 
being extra zeroes (11).  

In this case, there are more zeroes in the data, 
compared to those in the ordinary Poisson 
distribution. Under these circumstances, the use of 
Poisson distribution will lead to erroneous inferences 
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and misleading results. In order to deal with the extra 
zeros, Hurdle and Zero-inflated approaches have 
been introduced by Mullahy (12) and Lambert (13), 
respectively. To deal with over-dispersion, there are 
some models, such as negative-binomial (14), 
Conway-Maxwell Poisson (15), Hermit (16), and 
generalized Poisson (17). Zero-inflated negative-
binomial regression, Hurdle negative-binomial 
regression (18), Zero-inflated Conway-Maxwell 
Poisson regression (19), Zero-inflated hermit (20), 
and Zero-inflated generalized Poisson regression 
(21) were used in order to simultaneously investigate 
over-dispersion and extra zeroes. Another 
distribution used for count data is the double Poisson 
distribution. This distribution is a special case of a 
double exponential family first introduced by Efron 
(22). Hurdle and Zero-inflated approaches for this 
distribution are introduced by Gurmu (23) and Karen 
(24), respectively. 

 

2. Objectives 

This study aimed to investigate the causes of 
congenital malformations among newborns in Khoy, 
Iran, during 2017. To achieve this goal, several count 
regression models were utilized, such as Zero-
inflated double Poisson and Hurdle double Poisson 
using a Bayesian Approach. Moreover, Deviance 
Information Criterion (DIC) index was used to 
compare them with the Zero-inflated negative 
binomial and Hurdle negative binomial. Finally, the 
best model was selected, and the risk factors affecting 
the number of congenital malformations of newborns 
were determined based on this model.  

  

3. Methods 

3.1. Data  
The neonatal data set in Khoy, Iran, were used in 

this study, which was gathered under the supervision 
of the neonatal health department of the Ministry of 
Health and Medical Education. This national data set 
contains the demographic characteristics of the 
mother and the infants, types of neonatal anomalies, 
and involved risk factors. The data set recorded in 
2017 has been studied in the present study. In order 
to evaluate and fit the regression models, the number 
of anomalies for each infant was considered the 
response variable. The gender, birth weight, and 
parental consanguinity were considered predictive 
variables and entered into regression models. 

 
3.2. Double Poisson Distribution 

Double Poisson distribution introduced by Efron 
as follows (22): 

 
Where  and  are location and dispersion 

parameters, respectively, and  is constant 

normalizer. Moreover, E(Y)=  and Var(Y)=   signify 

the mean and variance of this distribution, 

respectively. Due to this variance, if , double 

Poisson converts to ordinary Poisson distribution. 
 

3.3. Zero-inflated Double Poisson Distribution 
Zero-inflated double Poisson distribution is 

obtained as follows (25): 
 

 
 
Regarding the parameters in Equation (2), the 

influence of covariates can be obtained as below: 
 

 
 

 
 
3.4. Hurdle Double Poisson Distribution 

Hurdle double Poisson distribution is obtained as 
follows: 

 

 
 

Where positive values have zero-truncated double 
Poisson distribution (12). 

Regarding the parameters in Equation (5), the 
influence of covariates is based on (3) and (4). 

 
3.5. Parameter Estimation Method and Comparative 
Criterion for Bayesian Models 

Various prior distributions can be considered 
for regression coefficients. Madigan et al. used 
Laplace and Normal priors for logistic regression 
coefficients (26). Eskandari et al. used the Bayesian 
logistic regression model to emphasize Laplace 
prior via the Laplace-Metropolis algorithm (27). In 
this study, the posterior distribution is obtained, 
and statistical inference is based on the posterior 
distribution using the non-informative prior 
distributions for the model parameters as well as 
the likelihood function for each model. The Markov 
Chain Monte Carlo method is used to calculate the 
posterior distribution. The following methods are 
used to compare the models used. 

 
3.5.1. Deviance Information Criteria 

One of the common indices for making 
comparisons among Bayesian models is the DIC, which 
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has been introduced by Spiegelhalter et al. (28). 
 

 
 

Where D( ) is the posterior mean 

of deviance and  denotes the difference between 

the mean of posterior deviance and that of the 
posterior mean for parameters. 

The model with the lowest DIC value is selected as 
the better model. 

 
3.5.2. Geweke  

Geweke statistic has a standard normal distribution 
and its non-significant mean convergence of Markov 
chain (29). 

 
3.5.3. Raftery- Lewis 

If the value of this index is less than 5, the Markov 
chain will be convergent (30). 

 

4. Results 

This section utilized the data of congenital 
malformations of newborns during 2017 in Khoy, 
Iran. This data set was collected under the 
supervision of the Department of Neonatal Health of 
the Ministry of Health and Medical Education. Table 1 
tabulates the frequency of the number of 
malformations for each infant.  

As can be seen, a significant proportion of infants 
are born without any congenital malformations. 

 

Table 1. Frequency for response variable 

N (%) Number of malformation 

6360(99.6)  0 
1(0.0002) 1 
20(0.003) 2 
2(0.0003) 3 
3(0.0005) 4 

 
The mean age of the mothers was obtained at 27.8 

years, and the majority (bout 52%) of the neonates 
were male. Moreover, 83% of the parents had no 
consanguineous marriages. The frequency of 
malformation was within the range between 0 and 4; 
moreover, the mean and variance values were 
approximately determined at 0.01 and 0.02 
respectively, indicating the inequality of mean and 
variance leading to the over-dispersion in data.  

Data analysis was performed using OpenBUGS 
software, R2OpenBUGS, and coda statistical packages 
in the R programming language. The statistical value 
of the Geweke was not significant for any of the 
parameters of the models used, indicating the 
convergence of the chains. All values for the Raftery-
Lewis test were between 1 and 5, indicating that the 
sample size was sufficient for the convergence of the 
chains. Therefore, Markov chains for all models have 
reached their stationary and convergence. The DIC 
value for the models is shown in Table 2. Hurdle 
double Poisson model with a value of 12,401.48 
indicated that this model performed slightly better. 
Therefore, the output for this model is shown in 
Table 3. In Bayesian models, the analysis is based on  

 
Table 2. Deviance information criteria 

ZINB HUNB ZIDP HUDP* 

-12400.81 -12401.25 -12401.09 -12401.48 

*HUDP: Hurdle Double Poisson, ZIDP: Zero Inflated Double Poisson, HUNB: Hurdle Negative Binomial, ZINB: Zero 
Inflated Negative Binomial 

 
Table 3. Bayesian estimates of parameters 

Upper CI Lower CI* S.D Mean 
Logistic part 
Levels 

3.89 1.20 0.71 2.41 Intercept               
 

------------ 
1.08 

 
------------ 

-0.47 

 
----------- 

0.40 

 
Reference 

0.29 

Gender 
  Male 
  Female 

 
----------- 

1.01 

 
----------- 

0.12 

 
----------- 

0.21 

 
Reference 

0.59 

Parental Relativity     
  No  
  Yes 

 
------------- 

4.24 
1.76 
-3.37 

 
--------------- 

-1.22 
-0.91 
-0.98 

 
-------------- 

1.35 
0.69 
0.71 

 
Reference 

1.08 
0.52 
-2.12 

Birth Weight (kg)   
  <1    
  1-1.5   
  1.5- 2.5 
  >2.5  

    Count model part 
1.27 0.13 0.30 0.72 Intercept 

 
------------- 

0.70 

 
------------ 

-0.65 

 
------------ 

0.35 

 
Reference 

0.04 

Gender 
  Male  
  Female 

------------- 
0.51 

-------------- 
-0.85 

-------------- 
0.36 

Reference 
-0.21 

Parental Relativity 
  Yes 

1 0.66 0.09 0.88 Theta 

   CI: Credible Interval 
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Credible Intervals. These intervals play a role similar 
to confidence intervals and p-value in classic 
statistics. If this interval contains zero, it indicates the 
non-significance of the covariate on the response. 
 

5. Discussion 

This study was conducted on the data of neonatal 
malformations in the Iranian Maternal and Newborn 
Network. Since a significant proportion of infants are 
born without any congenital malformations, the 
response variable in this study obtained many zeroes. 
Therefore, Hurdle and Zero-inflated approaches were 
used to examine the effect of risk factors on the 
occurrence and number of anomalies. Therefore, in 
this study, due to the effects of extra zeros and over-
dispersion on data, Hurdle and Zero-inflated double 
Poisson regression models were used, and the results 
were compared with those obtained from the Hurdle 
and Zero-inflated negative binomial regression 
models.  

According to the DIC index values, the Hurdle 
double Poisson model performed better than other 
models. Therefore, the output is examined and 
interpreted based on this model. If the value of all 
model covariates is zero, the intercept will be equal 
to the mean of the response. In the model used, the 
covariates will be zero when they are all in the 
reference category. In the final model, both intercepts 
represent the mean response for male infants under 
one kg without parental consanguinity.  

In the logistic regression, OR=exp (b). In this 
study, the values of the odds ratio were obtained 
using the mean column in Table 3 (OR=exp [Mean]). 
The odds ratio for the risk factor of the parental 
consanguinity was exp (0.59)=1.80. This means that 
the infants of consanguineous parents had an 80% 
higher chance of malformation, which was similar to 
the results of a study conducted by Rittler in which 
the infant's parental consanguinity was one of the 
causes of malformation (31). In addition, the 
obtained results were consistent with the findings of 
a study performed by Mosayebi (32). The odds ratio 
for infants above 2.5 kg was obtained at exp (-2.12). 
This means that infants under one kg have 1/exp (-
2.12)=8.33 times more chance to get congenital 
malformations. These results were in line with the 
findings of a study carried out by Tulandi (33). They 
were also consistent with the findings of a study 
performed by Taksande in which maternal age and 
low birth weight were the risk factors for congenital 
malformations (34).  

 

6. Conclusion 

According to the obtained results, parental 
consanguinity and low birth weight of the infant are 
considered important factors in the occurrence of 
congenital malformations in infants. To reduce the 

chance of getting congenital malformations in infants, 
culturalization is necessary in this regard to reduce 
consanguineous marriages; moreover, the necessary 
measures should be taken to increase weight at birth. 
These results were obtained using the Hurdle double 
Poisson regression model, which had a better 
performance among the models used. Therefore, the 
use of this model is recommended to analyze the data 
of neonatal anomalies. The results of this study, 
taking into account the comprehensive data, can be 
used to implement health and preventive measures 
to reduce the number of neonatal birth defects.  
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